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Introduction
The "Time-resolved Spectral Optical Breast Tomography" research project aims to develop a near real-
time three-dimensional (3D) spectral tomographic imaging algorithm with use of the cumulant
approximation to radiative transfer to model light propagation in tissues. This project in the three years'
period involves theoretical study of photon migration in turbid media, implementing an enhanced three-
dimensional (3D) tomographic imaging algorithm, and performing image reconstruction for experimental
data obtained from tissue phantoms and ex vivo tissues. The research generated 14 journal papers, 1 patent
application, and 23 conference papers and presentations during this period.

Body
The tasks performed during the three years' period include theoretical study of photon migration in turbid
media, implementing an enhanced 3D tomographic imaging algorithm, and performing image
reconstructions for experimental data obtained from tissue phantoms and ex vivo tissues.

Theoretical study of photon migration in turbid media

We extended the photon transport model for light migration in turbid media based on a cumulant
approximation to radiative transfer to a bounded medium with planar geometries[l] (Task 1.1). This
extension makes the cumulant model more suitable in practical applications which always involve finite
geometries. A "reshaped cumulant" solution[2, Appendix 1] is developed to improve upon the previous
second order cumulant solution to radiative transfer[l] described by a Gaussian distribution in two aspects:
1) separating the ballistic component from the scattered component to ensure that the summation in
expressions is convergent; and 2) enforcing the causality condition to ensure that no light travels faster than
the speed of light. Time-resolved profiles obtained using the analytical form were compared with those
obtained by the Monte Carlo simulation, for both transmission and backscattering. A significant
improvement of the accuracy of the "reshaped cumulant" solution over the original cumulant solution is
observed. The calculating time using our analytical form is much faster than that using the Monte Carlo
approach, usually at least 10' times faster (Task 1.1).

We also developed a novel Monte Carlo algorithm (EMC) [3, Appendix 2] to simulate polarized light
propagation in tissues and other turbid media (Task 1.1). This Monte Carlo method is based on tracing the
multiply scattered electric field instead of the conventional Stokes vector. The unique feature of EMC
makes it possible to simulate also coherent properties of multiply scattered light. The algorithm of EMC is
straightforward and can be easily adapted to simulate the propagation of polarized light in optically active
or gain medium.

Implementing an enhanced 3D tomographic imaging algorithm

We enhanced the 3D tomographic image reconstruction algorithms[4, 5] by using the new cumulant
transport model (Task 1.2) and making use of spectral information when observations of multiple
wavelengths are available (Task 1.3). We improved the 3D tomographic image reconstruction algorithm to
use a L-curve method guided by the signal-to-noise ratio of the dataset to determine the regularization
parameter (Task 1.4).

By scanning a point source on the grids of the input plane of a slab and measuring light intensities on a
detector array on the exit plane of the slab, a set of four-dimensional (4D) data is formed. The spectral
information adds an additional dimension of the data. The optimal approach to analyze this huge dataset is
studied (Task 1.5). A novel optical imaging approach based on independent component analysis to analyze
such massive dataset is proposed and implemented[6-9; Appendix 3, Appendix 4].
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The image reconstruction algorithm is a new approach for optical imaging and localization of objects in
turbid media that makes use of the independent component analysis (ICA) from information theory.
Experimental arrangement realizes a multisource illumination of a turbid medium with embedded objects
and a multidetector acquisition of transmitted light on the medium boundary. The resulting spatial diversity
and multiple angular observations provide robust data for three-dimensional localization and
characterization of inhomogeneities embedded in a turbid medium. ICA of the perturbations in the spatial
intensity distribution on the medium boundary sorts out the embedded objects, and their locations are
obtained from Green's function analysis based on any appropriate light propagation model.

We worked with the experimental group at the Institute of Ultrafast Lasers and Spectroscopy and to test
and verify our image reconstruction algorithm (Task 1.5, Task 2.1, Task 2.2). We have successfully
enhanced the algorithm to import data from the experimental group, to locate and characterize
inhomogeneities within the turbid medium, and to generate the two dimensional (2D) cross sections of the
inhomogeneities. The algorithm is tested and verified to work well for absorption, scattering, and/or
fluorescence inhomogeneities embedded in phantoms using different wavelengths (Task 2.1, Task 2.2).

To access the efficacy of a linear inversion scheme in image reconstruction of human breasts, we also
studied the nonlinear effect of the multiple passages of an absorption inhomogeneity of finite size deep
inside a turbid medium on optical imaging using the cumulant solution to radiative transfer (Task 1). We
derived the analytical nonlinear correction factor which agrees excellently with the predictions from the
Monte Carlo simulations. We concluded that the effect of the nonlinear multiple passages of an absorption
site on optical imaging only becomes appreciable when the size of the inhomogeneity reaches 10 times
transport mean free pat or larger for human tissues[ 10,11].

Image reconstructions for experimental data

We have successfully performed image reconstructions for experimental data obtained from tissue
phantoms and ex vivo tissues with absorption, scattering, and/or fluorescence inhomogeneities embedded
(Task 1.5, Task 2.1, Task 2.2, Task 2.3). To optimize the algorithm to achieve an in vivo mammography,
we have studied the performance of the reconstruction algorithm on breast phantoms and ex vivo breast
tissues (Task 1.5, Task 2.3). A total of about 10 cases for absorption, scattering, or fluorescence
inhomogeneities embedded in phantoms were investigated. In each case, the inhomogeneities were correctly
located and characterized. A two-dimensional (2D) cross section map of the inhomogeneities was then
generated afterwards based on back-projection [6-9, Appendix 3, Appendix 4]. One notable case is for a
breast phantom borrowed from University College London which has a thickness of 55mm (60 transport
mean free path), comparable to a real breast. All the four inhomogeneities were correctly reconstructed [6,
Appendix 3], including the one of the lowest contrast which has only 10% higher scattering than the
background and was believed to be undetectable [ 12].

Our experimental results show that the image reconstruction algorithm is superior to conventional photon
migration reconstruction algorithms in resolving low contrast and small inhomogeneities [6-9]. In addition,
this approach is applicable to different medium geometries, can be used with any suitable photon
propagation model, and is amenable to near-real-time imaging applications. This approach may be very
useful in detecting small tumors in breasts at early stage of development.

Key Research Accomplishments
*, Extended cumulant solution of radiative transfer to planar geometries making it more suitable

for practical applications which involve finite boundaries.
* Developed a "reshaped cumulant" solution for photon migration in tissues and other turbid

media, improving upon the previous cumulant solution to radiatve transfer.
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Developed an Electric field Monte Carlo (EMC) algorithm for simulating polarized light
propagation in turbid media whose unique feature includes simulating coherence phenomenon
of multiply scattered light.
Developed and enhanced the 3D tomographic image reconstruction algorithm by using the
cumulant transport model.
Developed the criterion of the optimal regulation parameter for inverse image reconstruction
related to the noise presented in measurements and enhanced the 3D tomographic image
reconstruction algorithm to use a L-curve method guided by the signal-to-noise ratio of the
dataset to determine the regularization parameter.
Derived the nonlinear correction factor of multiple passages of an absorption inhomogeneity by
a photon for optical imaging and provided a measure of the efficacy of linear inversion
schemes and extended the range of applicability of the linear inversion scheme for optical
imaging.
Developed a novel 3D image reconstruction algorithm "optical imaging using independent
component analysis (OPTICA)".
Tested and demonstrated the efficacy of OPTICA in imaging absorption, scattering, and/or
fluorescence inhomogeneities in turbid media, in particular, for low contrast small
inhomogeneities.

Reportable Outcomes
Journal Papers:

I. M. Xu and R. R. Alfano. Fractal mechanisms of light scattering in biological tissue and
cells. Opt. Lett., 2005. (accepted).

2. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano. Three-dimensional localization and
optical imaging of objects in turbid media using independent component analysis. Appl.
Opt., 44:18891897, 2005.

3. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano. Optical imaging of turbid media using
independent component analysis: Theory and simulation. J. Biomed. Opt., 2005. (in press).

4. A. Katz, Alexandra Alimova, M. Xu, Paul Gottlieb, Elizabeth Rudolph, J. C. Steiner, and R.
R. Alfano. In Situ determination of refractive index and size of Bacillus spores by light
extinction. Opt. Lett., 30:589591, 2005.

5. W. Cai, M. Xu, and R. R. Alfano. Analyticalform of the particle distribution based on the
cumulant solution of the elastic Boltzmann transport equation. Phys. Rev. E, 71:041202,
2005. (10 pages).

6. M. Xu. Electric field Monte Carlo for polarized light propagation in turbid media. Opt.
Exp., 12:65306539, 2004. http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 12- 26-
653.

7. M. Xu, W. Cai, and R. R. Alfano. Multiple passages of light through an absorption
inhomogeneity in optical imaging of turbid media. Opt. Lett., 29:17571759, 2004.

8. M. Xu. Light extinction and absorption by arbitrarily oriented finite circular cylinders using
geometrical path statistics of rays. App. Opt., 42:67106723, 2003.

9. M. Xu, M. Lax, and R. R. Alfano. Light anomalous diffraction using geometrical path
statistics of rays and gaussian ray approximation. Opt. Lett, 28:179181, 2003.

10. M. Xu and R. R. Alfano. More on patterns in Mie scattering. Opt. Comm., 226(1-6):15,
2003.

11. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. Shah, H. Savage, R. Rosen, S. A. McCormick,
and R. R. Alfano. Bacteria size determination by elastic light scattering. IEEE JSTQE,
9:277287, 2003.
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12. W. Cai, M. Xu, and R. R. Alfano. Three dimensional radiative transfer tomographyfor
turbid media. IEEE JSTQE, 9:189198, 2003.

13. M. Xu, W. Cai, M. Lax, and R. R. Alfano. Photon migration in turbid media using a
cumulant approximation to radiative transfer. Phys. Rev. E, 65:066609, 2002.

14. W. Cai, M. Xu, M. Lax, and R. R. Alfano. Diffusion coefficient depends on time not on
absorption. Opt. Lett., 27(9):731733, 2002.

Patents
15. R. R. Alfano, M. Xu, M. Alrubaiee, and S. K. Gayen. Optical tomography using independent

component analysis for detection and localization of targets in turbid media. US Patent
Application. (submitted).

Proceeding Papers:
16. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano. Optical tomography using independent

component analysis to detect absorptive, scattering, or fluorescent inhomogeneities in turbid
media. In Optical Tomography and Spectroscopy of Tissue VII, volume 5693 of Proceedings
of SPIE, Jan. 22-27, San Jose, California, USA, 2005. (in press).

17. M. Xu and R. R. Alfano. Light depolarization in turbid media. In Optical Tomography and
Spectroscopy of Tissue VII, volume 5693 of Proceedings of SPIE, Jan. 22-27, San Jose,
California, USA, 2005. (in press).

18. A. Katz, A. Alimova, M. Xu, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano.
Refractive index changes during germination of bacillus subtilis spores. In Advanced
Biomedical and Clinical Diagnostic Systems III, volume 5692 of Proceedings of SPIE, Jan.
23-26, San Jose, California, USA, 2005. (in press).

19. W. Cai, M. Al-Rubaiee, S. K. Gayen, M. Xu, and R. R. Alfano. Three-dimensional optical
tomography of objects in turbid media using the round-trip matrix. In Optical Tomography
and Spectroscopy of Tissue VII, volume 5693 of Proceedings of SPIE, Jan. 22-27, San Jose,
California, USA, 2005. (in press).

20. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano. Fluorescence optical tomography
using independent component analysis to detect small targets in turbid media. In Optical
Tomography and Spectroscopy of Tissue VII, volume 5693 of Proceedings of SPIE, Jan. 22-
27, San Jose, California, USA, 2005. (in press).

21. M. Al-rubaiee, M. Xu, S. K. Gayen W. Cai and, and R. R. Alfano. Time-resolved and quasi-
continuous wave three-dimensional tomographic imaging. In Femtosecond Laser
Applications in Biology, volume 5463 of Proceedings of SPIE, pages 8285, Palais de la
Musique et des Congr~s de Strasbourg, Strasbourg, France, Apr 2004. SPIE.

22. M. Xu, W. Cai, and R. R. Alfano. Nonlinear multiple passage effects on optical imaging of
an absorption inhomogeneity in turbid media. In Photon Migration and Diffuse-light Imaging,
volume 5138 of Proceedings of SPIE, pages 221230, 2003.

23. Alvin Katz, Alexandra Alimova, Min Xu, Elizabeth Rudolph, Howard E. Savage, Mahendra
Shah, Steven A. McCormick, Richard B. Rosen, and Robert R. Alfano. Identification of
bacteria by light scattering. In Alexander V. Priezzhev and Gerard L. Cote, editors, Optical
Diagnostics and Sensing in Biomedicine III, volume 4965 of Proc. SPIE, pages 7376, 2003.

Presentations:
24. Mohammad Alrubaiee, Min Xu, Swapan K. Gayen, and Robert R. Alfano. Optical

tomography using independent component analysis for breast cancer detection. In Era of
Hope: Department of Defense Breast Cancer Research Program Meeting, Pennsylvania
Convention Center, Philadelpohia, June 8-11 2005. DOD.

25. Min Xu, Mohammad Alrubaiee, Wei Cai, Swapan K. Gayen, and Robert R. Alfano. Toward
optical imaging of small tumors in breasts using cumulant forward model and independent
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component analysis. In Era of Hope: Department of Defense Breast Cancer Research Program
Meeting, Pennsylvania Convention Center, Philadelpohia, June 8-11 2005. DOD.

26. Min Xu, Mohammad Alrubaiee, Swapan K. Gayen, and Robert R. Alfano. Fluorescence
optical imaging in turbid media using independent component analysis. In CLEO/QELS and
PhAST, Baltimore Convention Center, Baltimore, Maryland, May 22-27 2005. OSA.

27. Min Xu and Robert R. Alfano. Light depolarization by Mie scatterers. In CLEO/QELS and
PhAST, Baltimore Convention Center, Baltimore, Maryland, May 22-27 2005. OSA.

28. Alvin Katz, Alexandra Alimova, Min Xu, Paul Gottlieb, Elizabeth Rudolph, Jeff C. Steiner,
and R. R. Alfano. Changes in refractive index and size of Bacillus Subtilis during activation,
measured by light transmission. In CLEO/QELS and PhAST, Baltimore Convention Center,
Baltimore, Maryland, May 22-27 2005. OSA.

29. Wei Cai, Min Xu, and Robert R. Alfano. Light distribution from the analytical solution of
the radiative transfer equation. In CLEO/QELS and PhAST, Baltimore Convention Center,
Baltimore, Maryland, May 22-27 2005. OSA.

30. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano. Three-dimensional localization of
several scattering targets in a turbid media using independent component analysis. In
CLEO/QELS and PhAST, Baltimore Convention Center, Baltimore, Maryland, May 22-27
2005. OSA.

31. K. G. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano. Backscattering of circularly polarized
light from a forward-peaked scattering medium: an electric field Monte Carlo study. In
Einsteins in the city: a student research conference at the city college of new york, The City
College of New York, new york city, NY 1003 1, Apr. 11-12 2005.

32. M. Xu, M. Al-rubaiee, S. K. Gayen, and R. R. Alfano. Information theory approach to detect
small inhomogeneities within tissue-like turbid media. In 4th Inter-institute Workshop on
Optical Diagnostic Imaging from Bench to Bedside at the National Institutes of Health,
National Institutes of Health, Natcher Conference Center, Bethesda, MD 20892, Sept. 20-22
2004.

33. M. Al-rubaiee, M. Xu, S. K. Gayen, and R. R. Alfano. Three-dimensional localization and
reconstruction of objects in a turbid medium using independent component analysis of
optical transmission and fluorescence measurements. In 4th Inter-institute Workshop on
Optical Diagnostic Imaging from Bench to Bedside at the National Institutes of Health,
National Institutes of Health, Natcher Conference Center, Bethesda, MD 20892, Sept. 20-22
2004.

34. M. Xu, M. Al-Rubaiee, W. Cai, S. K. Gayen, and R. R. Alfano. Simulated and experimental
separation and characterization of absorptive inhomogeneities embedded in turbid media. In
Biomedical Topical Meetings on CD-ROM (OSA), page WF25, Fontainebleau Hilton Resort
and Towers, Miami Beach, Florida, Apr 2004.

35. A. Katz, A. Alimova, M. Xu, P. Gottlieb, and R. R. Alfano. Rapid optical detection of bio-
agents. In International Conference on Advanced Technologies for Homeland Security, Univ.
Conn. Storrs, CT., Sept 25-26 2003.

36. M. Xu, W. Cai, and R. R. Alfano. Three dimensional Hybrid-Dual-Fourier tomography in
turbid media using multiple sources and multiple detectors. In Third Inter-Institute
Workshops on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure,
National Institute of Health, Bethesda, MD, Sep. 26-27 2002.

37. W. Cai, S. K. Gayen, M. Xu, and R. R. Alfano. Improving inverse reconstruction problem
for three-dimensional optical image of breast. In Era of Hope-Department of Defense Breast
Cancer Research Program Meeting, volume III, pages P481, Orange County Convention
Center, Orlando, Florida, Sept. 25-28 2002.

38. M. AI-Rubaiee, S. K. Gayen, W. Cai, M. Xu, J. A. Koutcher, and R. R. Alfano. Near-
infrared photonic imaging of human breast tissues. In Era of Hope-Department of Defense
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Breast Cancer Research Program Meeting, volume III, pages P482, Orange County
Convention Center, Orlando, Florida, Sept. 25-28 2002.

Grant application:
Applied for breast cancer concept award "Multispectral Optical Imaging Using Independent

Component Analysis for Breast Cancer Detection" for BC03-CA.

Conclusions
The work carried out during the three years' period leads to the following conclusions. First, the cumulant
transport model provides a more accurate model than the conventional diffusion model for the description
of light propagation in turbid media such as human breasts. Second, the "reshaped cumulant" solution
improves over the previous cumulant solution, providing a even more accurate model for light propagation
in turbid media. Third, the optimal regularization of image reconstruction depends on the noise presented in
the measurements; proper modeling of the noise and appropriate regularization improves the quality of
image reconstruction. Fourth, the correction for the nonlinear effect of the multiple passages of an
absorption site by light was shown to be essential in optical imaging to characterize properly
inhomogeneities strong in absorption. Fifth, a novel image reconstruction algorithm "optical imaging using
independent component analysis (OPTICA)" has been developed, able to resolve low contrast small
absorption, scattering, and/or fluorescence inhomogeneities in turbid media. Sixth, the theoretical formalism
and computer algorithm for 3D tomographic image reconstruction shows with experimental data the
potential to provide fast 3D images of small tumors in breasts at early stage of development.
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APPENDIX 1

PHYSICAL REVIEW E 71, 041202 (2005)

Analytical form of the particle distribution based on the cumulant solution of the elastic
Boltzmann transport equation

W. Cai, M. Xu, and R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers, New York State Center of Advanced Technology for Ultrafast Photonic Materials

and Applications, Department of Physics, The City College and Graduate Center of City University of New York,
New York, New York 10031, USA

(Received 17 November 2004; revised manuscript received 2 February 2005; published 5 April 2005)

An analytical expression of the particle distribution based on an analytical cumulant solution of the time-
dependent elastic Boltzmann transport equation (BTE) is presented. This expression improves upon the previ-
ous second order cumulant solution of the BTE described by a Gaussian distribution in two aspects: (1)
separating the ballistic component from the scattered component to ensure that the summation in expressions
is convergent; and (2) enforcing the causality condition to ensure that no particle travels faster than the free
speed of the particles. Time-resolved profiles obtained using the analytical form are compared with those
obtained by the Monte Carlo simulation, for both transmission and backscattering. The calculating time using
our analytical form is much faster than that using the Monte Carlo approach.

DOI: 10.1103/PhysRevE.71.041202 PACS number(s): 42.25.Dd, 05.60.Cd, 05.20. -y, 42.25.Fx

I. INTRODUCTION reconstruction process calls the forward model many times.
Recently, we have developed an analytical solution of the

The time-dependent elastic Boltzmann transport equation time-dependent elastic BTE in an infinite uniform medium
(BTE) describes the particle (and light, acoustic wave, etc.) with an arbitrary phase function [7,8]. The exact spatial cu-
propagation with time in a scattering medium, where the mulants of I(r,s,t) up to an arbitrary high order at any angle
particles suffer multiple scattering by randomly distributed and any time have been derived. A cutoff at second order of
scatterers. The BTE is also called the radiative transfer equa- the cumulants I(r,s,t) can be approximately expressed by a
tion in light propagation [1-3]. The solutions of the elastic Gaussian distribution, which has the exact first cumulant (the
BTE are applied in broad areas, such as atmospheric science, position of the center of the distribution) and the exact see-
medical imaging, and solid state physics. ond cumulant (the half-width of the spread of the distribu-

An example is the approach to optical imaging of human tion). The cumulant solution of BTE has been extended to
tissue that is often called "diffusion tomography," because the case of a polarized photon distribution, and to semi-
the theoretical model is built based on the solution of the infinite and slab geometries. Using a perturbation method,
diffusion equation. The diffusion equation is the lowest order the distribution I(r,s,t) in a weak heterogeneous medium
approximation of the radiative transfer equation, which has can be calculated based on the cumulant solution of the BTE.
significant error when the distance between a voxel and a The analytical cumulant solution of the BTE obtained,
source is short. However, the contribution from these voxels although it has exact center and half-width, is not satisfac-
near the source to the measured signals is much larger than tory in two respects. First, one cannot ensure that the sum-
that from voxels deep inside body. Hence, for accurate im- mation over I in the expressions shown in Sec. II is conver-
aging the theoretical model should be based on solution of gent at very early times. Second, a remarkable fault of the
the radiative transfer equation. A similar procedure can be Gaussian distribution at early times is that particles at the
applied to images of cloud distribution obtained using a lidar front edge of the distribution travel faster than the free speed
arranged on a satellite, which requires knowledge of the mul- of the particles in the medium, thus violating causality, espe-
tiple scattering effect of water drops distributed in the cloud cially for those particles moving along near forward direc-
on the time-resolved backscattering signals. In both ex- tions. The Gaussian distribution is accurate at long times and
amples, the size of the scatterers can be nearly equal to or in the backscattering case, since many collisions lead to a
larger than the wavelength of light, leading to a large aniso- Gaussian distribution according to the central limit theorem.
tropic factor. The use of low-frequency sound to detect oil- In this paper, the analytical cumulant solution of the BTE
bearing layers deep under the ocean floor is another example. has been improved compared to our previous work [7] in

Currently, numerical approaches, including Monte Carlo these two respects. For solving the first problem, we make a
simulations, are the main methods in solving the BTE [4-6]. separation of the ballistic component from the total l(r,s,t)
Numerical solution of the BTE is a cumbersome task, since and compute the cumulants for the scattered component Is)

the particle distribution I(r,s,t) is a function of position r, X (r,s, t). This treatment ensures convergent summation over
angle s, and time t, in a six-dimensional space of parameters. 1. Also this separation provides a clearer picture of particle
An analytical expression for 1(r,s,t) with quantitative accu- propagation. In the time-resolved transmission profile the
racy can greatly reduce the computation burden in modeling ballistic component is described by a sharp jump exactly at
particle and light propagation in scattering media, which is the ballistic time, separated from the later scattered compo-
essential for imaging in turbid media, because the inverse nent. For solving the second problem two approaches are

1539-3755/2005/71(4)/041202(10)/$23.00 ©2005 The American Physical Society
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used. The first method is to calculate the distribution includ-
ing the higher-order cumulants, based on our work in Ref. exp (x")n(it)"/n! = (exp(itx)) = , (x")(it)"In! (4)
[8]. However, computation of high-order cumulants is a =/0

cumbersome task. In the second method the Gaussian distri- The first cumulant (x), is the mean position of x. The
bution is replaced by a different-shaped form, which satisfies second cumulant (x2), represents the half-width of the distri-
causality, and maintains the correct center position and the bution. The higher cumulants are related to the detailed
correct half-width of the distribution computed by our ana-
lytical approach. There are infinite choices of the shapes of shape of the distribution. For example, (x3)a describes the
the distribution satisfying these conditions; we choose a skewness or asymmetry of the distribution, and (xa)e de-
simple analytical form. At long times, the reshaped distribu- scribes the "kurtosis" of the distribution, that is, the extent to

tion tends to the Gaussian distribution. Our results show that which it differs from the standard bell shape associated with

the reshaped distribution matches that obtained using Monte the Gaussian distribution function. The cumulants hence de-

Carlo simulation much better than the Gaussian distribution, scribe the distribution in an intrinsic way by subtracting off

The paper is organized as follows. In Sec. II we briefly the effects of all lower-order moments. In the 3D case, the

review the main results of the analytical cumulant solution of first cumulant has three components, the second cumulant
the BTE. Section III presents a separation of the ballistic has six components, and so on.

component from the scattered component, which makes the We have derived an explicit algebraic expression for the

summation over I convergent. Section IV improves the dis- spatial cumulants at any angle and any time, exact up to an
tribution at early times using two approaches, and presents arbitrarily high order n [8]. This means the distribution func-
the numerical result compared with the Monte Carlo simula- tion I(r,s,1) can be computed to any desired accuracy. At the
tion. Section V is devoted to discussion and conclusions, second order, n=2, an analytic explicit expression for distri-

bution function I(r,s,t) is obtained [7,8]. This distribution is
Gaussian in position, which is accurate at later times, but

II. THE ANALYTICAL CUMULANT SOLUTION only provides the exact mean position and the exact half-
OF THE BTE width at early times.

The elastic Boltzmann kinetic equation of particles, with The Gaussian distribution of the second-order cumulant

magnitude of velocity v, for the distribution function I(r, s, t) solution is written as

as a function of time t, position r, and direction s, in an
infinite uniform medium, from a point pulse light source, I(r,s,t) = F(s,sot) 1

b'(r-ro)b(s-s 0)S(t-t 0 ), is given by (4v)3 12  (detB) 1 /2

Ol(r,s,t)/dt+vs VrJ(r,s,t) +±ta(r,s,t) Xexp[-l(B-') ,(r - rc)(r - r), (5)

A P(s,s')I(r,s',t)ds' - ttl(r,s,t) where F(s,so,t) is the total angular distribution F(s,so,t)
f =fI(r,s,t)dr, which has the following exact expression:

+ 5(r - ro),S(s - so) (t- t) (1) 21+1

where As is the scattering rate, /a is the absorption rate, and F(s,s0 ,t) = exp(- ILat) - exp(-g/t)P1 (s . so)

P(s,s') is the phase function, normalized to fP(s,s')ds'= 1. 4

The phase function is assumed to depend only on the scat- 21+1*
tering angle in an isotropic medium. Under this assumption, = exp(- pAt)E - exp(-glt)E Ym(s)Y *m(so),

an arbitrary phase function can be handled. We expand the m

phase function in Legendre polynomials with constant coef- (6)
ficients, where

4i1P(s, s') E -- aj t(s " s'). (2) g, = /.js[ I - al/(2l + 1)]. (7)

Two special values of g, are g0=0, which follows from the
Recently, we have developed a different approach to ob- normalization of P(s,s'), and g,=v/ 1,,, where tr is the trans-

tain an analytical solution of the BTE in an infinite uniform port mean free path, defined by ltr=V/[I.s(1-(cos 0))],
medium, based on a cumulant expansion [7,8]. where (cos 0) is the average of s-s' with P(s,s') as weight.

We briefly review the concept of the "cumulant" in a one- In Eq. (6), Yre(s) are spherical harmonics normalized to
dimensional (ID) case. Consider a random variable x, with a 417/(21+ 1).
probability distribution functionf(x). Instead of usingfix) to The center of the packet (the first cumulant), denoted by
describe the distribution, we define the nth moment of x, rc, is located at

(x") = f x"f(x)dx, (3) = G, AP,(cos 0)[(/+ 1)f(gj-gg+t) + lf(gj-gj-l)],

and correspondingly the nth cumulant (xn), defined by (8)
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rc= GE A1P(')(cos O)cos O[ftg, -g,-j) -f(gl-gl 1+0],
! 0.9

(9) o. c

where G=v exp(-Mat)/F(s,so,t), A,=( I/47T)exp(-g 1t), and 0.7

for any variable x,

f(x) = [exp(xt) - 1]/x. (10)

, is obtained by replacing cos q5 in Eq. (9) by sin q$. In Eqs. o4
y D

(8) and (9), P(m)(cos 0) is the associated Legendre function.
The square of the average spread half-width (the second 0.3

cumulant) is given by 0.2

Bap = v GAp a- rW/2, (11) 0.1 z

where all the coefficients are functions of angle and time: o L L L

0 2 4 6 8 10 12 14 16 18 20

2/-1 ( 1+ 1)(1+ 2).E(2) t (unitof l1,/v)~A= = P /(cos 0)~ 2•1+ 3
1 2-1 21+3 FIG. 1. The moving center R' and the diffusion coefficients Dzz

+ Pl2 (3) + 1)2E(4)1 and Dx of the particle density function as functions of time t.

21-1 21+3 ' I'
The second order cumulant approximation for the particle

1 )[ l(ll)E(1)(l)(l+ 2)E(2) density distribution N(r,t) has a Gaussian shape:
Axryy = E AIPl(cOs O) - LL 7 "1I - E• l Nc))24rD.tl247Dv xp Dv

Y 2 21-1 1 21+3 N(r, t) 1 1 [ (z- RY1

1(1- 3 (1+ 1)(1+ 2),(4)1 (4 rD -vt) 471TD.vt e 4D zvt

21-1 21+3 ×Xexp (DxZ ;y2 1exp(- iat), (20)

I AI2P( 2)(cos O)cos(2,0) F
2 with a moving center located at

I El ")+ E(2)- 1 E-(3)- 1 E•E(4) a R = v[1 - exp(-g, t)]/gl, (21)

21 1 21+ 3 21-1 21+3 and the corresponding time-dependent diffusion coefficients

(13) are given by

where (+) corresponds to A,, and (-) corresponds to Av, Dzz = [g 1 - exp(- g-
S[ 1 ,I

Ay= Ayx E = 2)(cos 0)sin(2tE) [21--1 g- [-exp(-g 2 t)]- -[ 1-exp(-glt)]2

11 1 9 14 2(g1 - 2)Ii 2g1 xg~
+ - E2 )_ E1 3 _ • E (22)

21+3 21-1 21+3 1 4
1L 2-•-1E =D v t + g2 .[1 -exp(_glt)]

AXZ AZ= 2 AIe i(cos 0)cos4E[ 2- = itg 1 1(g1 -g 2)121-

2(1+2) (2) 1 (__)+ 1. (4) 1 - exp(- g2t)]0 (23)
El+3 -l-1 l + (15) g 2(gl1 g 2) •

Each distribution in Eqs. (5) and (20) describes a particle
Ay, is obtained by replacing cos 0 in Eq. (15) by sin (k. In "cloud" anisotropically spreading from a moving center, with
Eqs. (12)-(15) E(") are given by time-dependent diffusion coefficients. As shown in Fig. 1, at

E [(g1 -g- 2) -f(g,-g 1 -)]/(g,-i-g-2), (16) early time t--0, the mean position of the photons moves
along the so direction with speed v, and the diffusion coeffi-

E(2) fgz- g1+2)-f(9g -g9l+ 1)]/(g+1 - g/+2), (17) cient tends to zero. These results present a clear picture of
El 1 #91  2  f -( nearly ballistic motion at t--0. With increase of time, the

motion of the center slows down, and the diffusion coeffi-
El 3)[f(gl-g 1 ) -- t]/(g,-g 1-), (18) cients increase from zero. This stage of particle migration is

often called a "snakelike mode." At late times, the total an-
El4 [f(g,- g+ 1) - t]/(g,- gi,1). (19) gular distribution function tends to become isotropic. The
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x10 5  !(b)(r,s,t) =exp[- (/.s +/%)t]S(r - vtso)(s - so). (24)[• ~ ~150 ...

300 ...... The moments of the ballistic component can be easily calcu-
2.0 60.. lated. When so is along z, we have20750 ....

S9Q0o .....

100° ---- J z~lb(rst)d3r = exp[(- Iis + tt)t](vt)b(s -s 0),
1.5 f

- hV (25)

1.0 and other moments related to znlx"2yn3 (n2 ,n 3 # 0) are zero.
- I . The total distribution is the summation of the ballistic

0.5 ,,'>-..• component and the scattered component:

S.I(r,s,t) = !(b)(r,s,t) + (s)(r,s,t); (26)

0 0 50 100 150 200 250 300 350 400 450 500 hence, the moments of the scattered component can be ob-

1(ps) tained by subtracting the corresponding ballistic moments
from the moments of 1(r, s, t). For example, we have

FIG. 2. Light distribution in an infinite uniform medium as a
function of time at different received angles, using the second cu- fzn(S)(r,s,t)dr= zI(r,s,t)d3rfznl(b)(r,s,t)dr.
mulant solution of the BTE (Gaussian distribution), where the de-
tector is located at z= 10 mm from the source in the incident direc-
tion. The parameters for this calculation are ,tr=2 mm, the (27)

absorption length /,,=300 mm, the phase function is computed us- Notice that
ing Mie theory for polystyrene spheres with diameter d=1. 11 jam
in water, and the wavelength of the laser source X=625 nm, which b(s - so) = 7 [(21+ I)/47]P,(s " so). (28)
gives the g factor g=0.926. I

Substituting Eqs. (25) and (28) into Eq. (27), the correspond-
particle density, at t->ltrlv and r>ltr, tends toward the ing cumulants for the scattered component /()(r,s,t) can be
center-moved (l/tr) diffusion solution with the diffusive co- easily obtained; they replace Eqs. (6), (8), and (12) by
efficient /,r/ 3 . Therefore, our solution quantitatively de-
scribes how particles migrate from nearly ballistic motion, to FlS)(s, so, t) = exp(-At) 21+1-[exp(-gzt)
snakelike motion, and then to diffusive motion. 41T

Figure 2 shows the calculated distribution as a function of
time at different receiving angles in an infinite uniform me- - exp(- p-y)]PI(s • so), (29)
dium, computed by the second order cumulant solution,
where the detector is located at 51 tr from the source in the rc(s) =G PI(cos 1)1{exp(-g1t)(l+ )f(gl-gi+)
incident direction of the source. Figure 2 shows anisotropy e 47)

of the distribution at a distance of 51tr from the source. This
type of distribution has been demonstrated by time-resolved + lf(g1-g -l)] - (21 + 1)t exp(- igt)}, (30)
experiments [9].

The analytical solution obtained, although it has the exact A(s) 1P(cos [) [-exp-g1t)[ý E1)
center and half-width, is not satisfactory in two respects. As- 4 P sx1
First, at very early times, exp(-g 1t) -- 1 for all 1; hence, one

cannot ensure that summation over 1 is convergent. Second, (1+ 1)(l+ 2) .2) + E P (3)2 (1+ l)2 E(4)l
particles at the front edge of the Gaussian distribution travel 21+3 21- 1 21+3 J
faster than the speed v, thus violating causality. t2(21+ 1) exp(-I1sO) (31)

2

111. SEPARATING THE BALLISTIC COMPONENT FROM The expressions for the other components of the first and
THE SCATTERED COMPONENT second cumulants are unchanged, provided all F(s, so, t) in G

In order to make the summation over I convergent, we in Sec. II are replaced by FP)(s,s 0 ,t). Note that Eq. (28)
separate the ballistic component from the total I(r,s,t), and actually is equal to zero at s #so, and there is no ballistic
compute the cumulants for the scattered component /s component in these directions.
X (r, s, t). The replacement of equations in Sec. II by Eqs. (29)-(3 1)

The ballistic component is the solution of the homoge- greatly improves the calculation of cumulants at very early
neous Boltzmann transport equation, which is the transport times. By the subtraction introduced above, the terms for
equation, Eq. (1), without the "scattering in" term [the first large / approach zero, and summation over 1 becomes con-
term in the right side of Eq. (1)]. The solution of the ballistic vergent at very early times. When t--0, g1=1.i[1-a,/(2l
component is given by + 1)] [see Eq. (7)] approaches It, for large 1, f(g-gl, 1 ) -t
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FIG. 3. Time-resolved profile of the backscattered (1800) photon FIG. 4. Time-resolved profile of transmitted light in an infinite
FIG.3. imereslvedproileof he bcksattreduniform medium, computed using the tenth order cumulant solution

intensity inside a disk with center at r=O, radius R= 11tr, thickness (solid curve), the second order cumulant solution (dotted curve),

dz=0.1/tr, and the received solid angle dcos 0=0.001, normalized and th e sion a roxima tion (tomaed with

to inject one photon. The Heyney-Greenstein phase function with and the diffusion approximation (thick dots curve), compared with
g=0. isuse, an 1/,=O Thesold crve s fr te seondcu- that of the Monte Carlo simulation (discrete dots). The detector is

mulant solution (Gaussian distribution), and dots are for the Monte located at z= 61r from the source along the incident direction, and

Carlo simulation. The inset diagram shows the same result drawn the received direction is 0=0. The Heyney-Greenstein phase func-

using a logarithmic scale for intensity. tion with g=0.9 is used, and the absorption coefficient I /1,=0.

[see Eq. (10)], and E,(i-a)=t2/2 [see Eqs. (16)-(19)], which that move along near forward directions. In the following,
l itwo approaches are used for overcoming this fault: (A) in-

results in cancellation in the summand for large l at very eluding higher cumulants; and (B) introducing a reshaped
early times. itiuin

An example of successful use of this replacement is the distribution.

calculation of backscattering. When 0= 1800, P1(cos 0) = 1 or
-1, depending on whether 1 is even or odd. The computed re A. Calculation including high-order cumulants
at very early times using Eq. (8) oscillates with a cutoff of 1. We have performed calculations including the higher-

But the computed c(s) at very early times using Eq. (30) order cumulants to obtain a more accurate shape of the dis-
becomes stable. Calculation shows that �(') =0 at any time tribution. The Codes for calculation are designed based on a

when 0= 180'. formula derived in Ref. [8].

Figure 3 shows the computed time profile of the back- Figure 4 shows I(r,s,t) with the detector located at z

scattering intensity I(S)(r,s,t) at a detector centering at r=O = 61tr in front of the source and receiving direction along 0

and received at an angle 0= 180', which actually is the total =0, computed using the analytical cumulant solution up to

backscattering intensity I(r,s,t) because s 0 s0, compared tenth order of the cumulants (solid curve), up to the second

with the Monte Carlo simulation. The absolute value of the order cumulants (dotted curve), in the diffusion approxima-

intensity, as well as the shape of the time-resolved profile, tion (thick dotted curve), and the Monte Carlo simulation

computed using our analytical cumulant solution of the BTE (discrete dots). The figure shows that the tenth order cumu-

match well with those of the Monte Carlo simulation. The lant solution is located in the middle of the data obtained by

inset diagram is the same result drawn using a logarithmic the Monte Carlo simulation, and I(r, s,t) ý0 before the bal-

scale for intensity. Note that this result of backscattering, listic time tb= 61 tr/V. The second order cumulant solution has

based on the solution of the BTE, is for a detector located nonzero l(r,s,t) before tb, which violates causality. The

near the source, different from other backscattering results computed N(r,t)/47T using the diffusion model has a large

based on the diffusion model, which is only valid when de- discrepancy with the Monte Carlo simulation, and the diffu-
tector is located at a distance of several 1,r from the source. sion solution has more nonzero components before tb, which

violates causality.
IV. SHAPE OF THE PARTICLE DISTRIBUTION Using the second order cumulant solution, the distribution

function can be computed very fast. The associated Legendre

If the cumulants with order n > 2 are assumed all zero, the functions can be quickly computed using recurrence relations

distribution becomes Gaussian. The Gaussian distribution is with accuracy limited by the computer machine error. It
accurate at long times. At early times, particles at the front takes 1 min to produce 105 data points of I(r,s,t) on a per-
edge of the distribution travel faster than the free speed of sonal computer. On the other hand, in order to reduce the

the particles, thus violating causality, especially for particles statistical fluctuation to the level shown in Fig. 4, 109 events
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are counted in the Monte Carlo simulation, which takes tens 0.7

of hours computation time on a personal computer. Compu- - Reshaped
tation of high-order cumulants also is a cumbersome task, 0.6- ..... Gaussian
because the number of involved terms rapidly grows with Monte Carlo

increase of the order n. Also, for a distribution function that -
is positive definite, the Bust theorem states that the existence
of nonzero cumulants of any order higher than 2 will be ,,4
accompanied by nonzero cumulants of all orders [10]. There- L'"
fore, no matter how the cutoff at a finite high order n is 50.3 ,
taken, the cumulant solution of the BTE cannot be regarded
as exact. O.2 , ,

B. Reshaping the particle distribution 0.1

For practical applications, we use a semiphenomenologi- - K "'-
cal model. The Gaussian distribution is replaced by a 0

different-shaped form, which maintains the correct center po- Z (unit of I,)
sition and the correct half-width of the distribution. This dis-
tribution satisfies causality, namely, I(r,s,t)=0 outside the FIG. 5. The ID spatial photon density at time t=2Itr/v, obtained
ballistic limit vt. There are an infinite number of choices of by the reshaped form Eq. (33) (solid curve) and the Gaussian form
shape of the distribution under the above conditions. We (dashed curve), compared with that of the Monte Carlo simulation
choose a simple analytical form as discussed later. At long (dots). The Heyney-Greenstein phase function with g=0.9 is used,
times, the half-width of the distribution o- (4B)"I2 , with B and I /l,=O. In the figure, the unit on the z axis is /tr; RC is the center
shown in Eq. (11), spreads as t11/2; hence, o-"vt at large t, position of the distribution computed by the cumulant solution; z, is
and the Gaussian distribution at long times with half-width oa the distance between the origin of the new coordinates and the
can be regarded as completely inside the ballistic sphere. The source.
reshaped distribution of I(r,s,t) hence should approach the
Gaussian distribution at long times. 'F> 0,

1. ID density <vtz O (34)

We first discuss the one-dimensional density as an ex-
ample to explain our model. At the ballistic limit 5=2±, N(zQ) reduces to zero, and N(Q)

The Gaussian distribution of ID density is described by =0 when F is outside of F,. The parameter b in Eq. (33) can
be determined by normalization; the parameters (a,z,) can

N(z) = (41rDzvt)-l/ 2exp[- (z-RD)2/(4Dzzvt)], (32) be determined by fitting the center and half-width of the

where R' and Dz are given in Eqs. (21) and (22). As shown distribution. This fit requires
in Fig. 5, although the ID Gaussian spatial distribution (the
dashed curve) at time t=2 ltr/V, Eq. (32), has the correct cen- )F
ter and half-width, the curve deviates from the distribution J
computed by the Monte Carlo simulation (dots), and a re-
markable part of the distribution appears outside the ballistic
limit vt2ltr. At early times the spatial distribution is not f (36)
symmetric about the center RC. When R' moves from the zz- z)dR -zc,

source toward the forward side, causality prohibits particles
appearing beyond vi. This requires the particles in the for-
ward side to be squeezed in a narrow region between RC and ( F2) f F
vt. For a balance of the parts of the distribution in the for- -
ward and backward sides of RC, the peak of the distribution
should move to a point at the forward side and the height of The integrals in Eqs. (35)-(37) can be analytically per-
the peak should increase. The earlier the time t, the closer is formed; they are related to the standard error function (the
R' to vt, and the asymmetry of the distribution becomes incomplete gamma function, or the confluent hypergeometric
stronger. Based on this observation we propose the following function of the first kind):
analytical expression: (1) to move the peak position of the
distribution from R' to ze, where the parameter z, will be 1/2

determined later; (2) to take this point as the origin of new Flo)(f6) = ey dy = - erf(fl), (38)
coordinates; and (3) to use the following form of the shape of Jo 2
the ID density in the new coordinates:

NQ) bex( o2F)[ (ý/'f] 0l e_2 1 •2where N(z)=bexp(-° 2)[1-(7/±)2] (33) FPi )/3) (= e y dy =-I - e-], (39)

where Jo 2
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FF2 e-y y2=dy= '[(2n - 1)Ft2f- 2)(/3) -2"-Ie-10.] - Reshaped
Joe- 2 ,8 Monte Carlo

Gaussian
S0.02(40)

2f 2n1y I[nF (p2].oo
F( 2

n+l)() f eyy2,,+ldy = 2 2nF -1)( _2fle-2,p ]. ?le

(41) C.01

For nonlinear fitting a difficulty is how to quickly find a /...
global minimum. The optimization codes require setting a • "
good initial value of the parameters, so the obtained local i /
minimum is the true global minimum. Since we have no /
experience for setting good initial parameters at a special 0 1 '
time, the following procedure is used. At the long time limit 0 2 4 6 8 10 12 14

z'•ýR' and a2 (4D~zvt)-', the distribution approaches the t (unit of L,1v)

original Gaussian distribution. We make a nonlinear fitting at FIG. 6. Time-resolved profile of 3D photon density, where the
a point of long time tm1, using these values of the parameters detector is located at z=31tr from the source along the incident
as initial values. Then, we make a fitting at tfltmAt, direction, obtained by the reshaped form Eq. (42) (solid curve) and
where At is a small time interval, with the initial values of the Gaussian form (dashed curve), compared with that of the Monte
parameters from those obtained at tin, to produce parameters Carlo simulation (dots). The Heyney-Greenstein phase function
at t,,-,. Step by step, the parameters in the whole time period with g=0.9 is used, and the absorption coefficient 1/l/=0.
can be computed. Our test shows that the fitting program
using this procedure runs quickly, with very small fitting
error, up to a certain short time limit. Ft[cos(X) - Q(]

2 N(F)d3 F= 2D2 zvt, (46)
The solid curve in Fig. 5 shows the reshaped spatial dis- f

tribution, Eq. (33), of ID density at time t=2ltr/V, using the
Heyney-Greenstein phase function with g=0.9, which satis-
fies causality and matches the Monte Carlo result much bet- [fsin(,-)]2N(i)d3F= 4D,,vt. (47)
ter than the Gaussian distribution. f

2. 3D density In the above integral d3 -=2irr~drd cos(X-), integration over T

In this case the ballistic limit is represented by a sphere can be analytically performed, and integration over ý is per-
with center located at the source position and the radius vt. formed numerically.
We move the peak position of the distribution from R' to z, Figure 6 shows the computed time profile of the 3D den-
along the so=i direction, take this point as the origin of new sity N(r,t), with the source at the origin and the detector
coordinates, and use the following form of the shape of the located at r=(0,0,3Itr), using the Heyney-Greenstein phase
3D density as a function of position in the new coordinates, function with g=0.9. The solid curve is for the reshaped
r: form using Eq. (42). The dashed curve is for the Gaussian

form, and the dots are for the Monte Carlo simulation. The
N(F) = b exp[- a(x-)2 ][1- (I /-)2], (42) results clearly demonstrate an improvement by use of the

and N(rF)= 0 when T> T, where , is the polar angle of F" in reshaped form over use of the Gaussian form. The nonzero
the new coordinates, and r- is the distance between the new intensity before tb= 3

Itr/v in the reshaped form has been
origin and the point obtained by extrapolating d to the sur- completely removed, while the Gaussian distribution has
foriginfan the pollintic o ied bnonzero components before tb. The reshaped time profile
face of the ballistic sphere, matches with the result of the Monte Carlo simulation in

"[(vt)2 - Zsin 2- cos(z. (43) most of the time period, but the peak values are about 20%
C slower. The errors are much smaller than those of the Gauss-

In Eq. (42) a(X-) is defined by ian distribution. By integration over time, the density for the
steady state can be obtained. The difference in the steady

a(,) -a2 cos 2(,-) + c2L sin 2(X-). (44) state density between the reshaped analytical model and theMonte Carlo simulation is about 3%.
The parameters b can be determined by normalization; the
parameters (ca,a_ ,zc) are determined by fitting the center 3. Distribution function I(s)(r,s,t)
and half-width of the distribution. This fit requires When the detector is located less than 81,r from the source

2 Rin a medium with large g factor, the distribution function
( f) Jcos(x-)N(i-)d 3F=R~z-Ze, (45) !(s)(r,s,t) is highly anisotropic, and the intensity received
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FIG. 7. Schematic diagram describing the geometry of the par-
ticle spatial distribution for scattering along a direction s 0 s0.At a
certain time 1, the center of the distribution is located at r'. The 0 0 2 12 14 16

0 2 4 6 a 10 1 4 1
half-width of the spread is characterized by an ellipsoid (the gray t (unit oflt/o)
area). The large sphere represents the ballistic limit. The origin of
the new coordinates is set by extending from Irt to z,. r- is the FIG. 8. Time-resolved profile of photon distribution function,
point obtained by extrapolating a position F (in the new coordi- for light directions 0== (a) 0 and (b) 30', where the detector is
nates) to the surface of the ballistic sphere, and the length r- is located at z=3lir from the source along the incident direction, ob-
determined by Eq. (43). tained by the reshaped form Eq. (42) (solid curves) and the Gauss-

ian form (dashed curve), compared with that of the Monte Carlo

strongly depends on the angle. One needs to use the photon simulation (dots). The Heyney-Greenstein phase function with g

distribution function (S)(r,s,t) instead of the photon density =0.9 is used, and the absorption coefficient 1/1"=0.

N(r, t).

In this case the center position rc, as a function of (s,t), is a(k, )2 
= a/ COS 2(X) + a2 sin 2 (,•)cos 2 (•)

not located on the axis at incident direction so. Without loss
of generality, we set the scattering plane (s,so) as the x-o-z + aj5 sin 2 (- sin 2(@' (49)

plane. The center position now is located at rc=(r.',0,r').
The orientations and lengths of the axes of the ellipsoid, where ý and ý are, separately, the polar angle and the azi-

which characterize the half-width of the spread of the distri- muthal angle of position F in the new coordinates. The pa-
bution, can be computed as follows. The nonzero compo- rameters (ar, ao7 , aj,z,) are determined by fitting the center
nents for the second cumulant now are (B.x,B r,BzBy.), Irci and lengths of the three axes of the ellipsoid character-
expressed in Eq. (11). Byy represents the length of one axis of izing the half-width of the distribution. In many cases, the
the ellipsoid, perpendicular to the scattering plane. By diago- ellipsoid can be approximately treated as an ellipsoid of

nalizing the matrix revolution; the length of the axis of the ellipsoid along the ý"

B B-.' I direction is approximately equal to that along the . direction,

[, B:x (48) and thus the computation can be simplified. The reshaped
distribution function /(S)(r,s,t) for a certain direction s is

the lengths and directions of the other two axes of the ellip- normalized to F(')(s,sot).
soid on the scattering plane can be obtained. In fact, calcu- Figure 8 shows the computed time profile of the distribu-
lation shows that the direction of rc is also the direction of tion function ls)(rs,t), when the detector is located at 31, in

one axis of the ellipsoid, since at a certain time t the direction front of the source, using the Heyney-Greenstein phase func-
rc can replace s as the unique special direction in the scat- tion with g=0.9. Figures 8(a) and 8(b) are, separately, for
tering plane. In order to reshape the distribution we choose a different directions of light s: 0=0 and 30'. The solid curves
new i axis along the r' direction, and move the peak position are for the reshaped form using Eq. (42) and the dashed
of the distribution from I,-1 to z, taking this point as the curve is for the Gaussian form. The dots are for the Monte
origin of new coordinates (3F,3=y,z-), as shown schemati- Carlo simulation. Anisotropic distribution is shown by com-

cally in Fig. 7. paring Figs. 8(a) and 8(b). The reshaped distribution removes
In the new coordinates we use a shaped form similar to intensity before tb= 3 ltr/v, which appears in the Gaussian dis-

that of the 3D density Eqs. (42), while a(X-- in Eq. (42) is tribution. The reshaped distribution matches the Monte Carlo
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20" using the above fitting procedure up to t>'4ltrIV for the 3D
ReshapedT case (up to tI- 2ltr/v for ID density). The Monte Carlo simu-

1.8 .% Gaussian lation is more time consuming in this time region. This

1.6 M model may work well for g <0.9 in the above time region,
because there is less forward scattering for a smaller g factor.

1.4 The fitting error begins to increase during 3ltr/v < t < 41tr/v.
1.2 (a) 0 = 00 At early time t< 3 ltr/V, rc becomes very close to the ballistic

1 limit vt; the front edge of the distribution almost perpendicu-
larly jumps at the position vt. In this case, the parameter z,0.8 oe"--vt in our model, is difficult to adjust through the fitting

".. program. A more suitable model in this early time period is
0 !"needed. Of cause, Monte Carlo simulation also runs fast for

, .4 in
short times and small spatial regions. For s at the near back-

S0.2 ,.scattering direction, the Gaussian distribution can be a good

. . . . approximation as shown in Fig. 3, because most particles
4 6 10 12 14 suffer many scattering events to transfer from the forward

direction to the backward direction. Our calculation shows
1.2 ^ that the center position r' is close to the source for 0

N (b) 0 300 1800 and far from the ballistic limit; hence, reshaping has
• Io"little effect on the backscattering case.

'" 0.8 In addition to improving convergence, separating the bal-
0.6 listic component from the scattered component also provides0. a more appropriate time-resolved profile for transmission. In
0.4/ the time-resolved transmission profile the ballistic compo-

0.2 - - " nent is described by a sharp jump exactly at time vW, sepa-
rated from the later scattered component. The intensity of the

0 2 4 6 8 10 12 14 ballistic component, compared to the scattered component,
t (unit of fr/v) strongly depends on the g factor. For g= 0, Itr,=l , the ballistic

component decays to exp(-1)=0.368 at distance 1ltr" But for
FIG. 9. Time-resolved profile of photon distribution function, g=0.9 it decays to exp(-10)=4.54X 10-1 at ltr, because Itr

for light directions 0= (a) 0 and (b) 300, where the detector is = 10ls. The jump of the ballistic component can be seen in
located at z=41tr from the source along the incident direction. Other experiments of transmission of light for a medium of small
parameters are the same as in Fig. 8. sized scatterers (small g factor), but is difficult to observe for

a medium of large sized scatterers (large g factor). Our for-
result much better than the Gaussian distribution, but the mula presented in Sec. III provides a good estimation for
peak value is about 40% lower than that of the Monte Carlo both small and large g factors by explicitly separating these
simulation. Integrating over time shows that the difference in two components.
the steady state distribution function between the reshaped Using the obtained analytical expressions, the distribution
analytical model and the Monte Carlo simulation is about l(r, s, t) can be computed very fast. The cumulant solution of
7%. The ratio of the peak value at 0=30' is about 60% of the BTE has been extended to the case of a polarized photon
that at 0=0, which shows stronger anisotropy at d=3ltr com- distribution [11], and to semi-infinite and slab geometries
pared to that at d=5ltr shown in Fig. 2. [12]. Using a perturbation method, the distribution I(r,s,t)

Figure 9 shows the distribution function /€)(r,s,t) when in a weak heterogeneous medium can be calculated based on
the detector is located at 4/tr in front of the source. The the cumulant solution of the BTE [12]. The nonlinear effect
reshaped distribution matches the Monte Carlo result much for strongly heterogeneous objects inside a medium can also
better than that at 3 1tr. It shows that the peak intensity at 41,, be calculated using a correction of the "self-energy" diagram
is about one order of magnitude smaller than that at 3 1tr, but [13]. Hence, the analytical form of the solution of the BTE
intensity decays with time more slowly at 4 1tr than at 3 1tr. may have many different applications.

In summary, the analytical cumulant solution of the Bolt-

V. DISCUSSION zmann transport equation is improved in two respects. The
ballistic component is separated and the cumulants for the

While causality, together with the correct center and half- scattered component are computed. This treatment ensures
width of the distribution, are major controlling factors in that summation-over I is convergent. We replace the Gauss-
determining the shape and the range of the particle distribu- ian distribution by a different shaped form, which satisfies
tion, the detailed shapes are, to some extent, different in the causality, and maintains the correct center position and the
different models. Our choice of the reshaped form is based correct half-width of the distribution computed by our ana-
on simplicity and ease of computation, which obviously is lytical formula. Our results show that the reshaped distribu-
not the only available choice. The initial results show that for tion matches that obtained by the Monte Carlo simulation
g=0.9 the parameters in our model can be quickly obtained much better than does the Gaussian distribution.
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APPENDIX 2

Electric field Monte Carlo simulation of

polarized light propagation in turbid
media
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Abstract: A Monte Carlo method based on tracing the multiply scattered
electric field is presented to simulate the propagation of polarized light in
turbid media. Multiple scattering of light comprises a series of updates of
the parallel and perpendicular components of the complex electric field
with respect to the scattering plane by the amplitude scattering matrix and
rotations of the local coordinate system spanned by the unit vectors in the
directions of the parallel and perpendicular electric field components and
the propagation direction of light. The backscattering speckle pattern and
the backscattering Mueller matrix of an aqueous suspension of polystyrene
spheres in a slab geometry are computed using this Electric Field Monte

Carlo (EMC) method. An efficient algorithm computing the Mueller matrix
in the pure backscattering direction is detailed in the paper.

© 2004 Optical Society of America

OCIS codes: (170.5280) Photon migration: (030.5620) Radiative transfer (290.4210) Multiple

scattering; (290.1350) Backscattering (290.7050) Turbid media; (030.6140) Speckle

References and links
1. A. Ishimam, Wave propagation and scattering in random media, I and 11 (Academic, New York, 1978).
2. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48(3), 38- 40 (1995).

3. S. K. Gayen and R. R. Alfano, "Emerging optical biomedical imaging techniques," Opt. Photon. News 7(3),
17--22 (1996).

4. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
5. S. Chandrasekhar, Radiative transfer (Dover, New York, 1960).
6. K. F. Evans and G. L. Stephens, "A new polarized atmospheric radiative transfer model," J. Quant. Spectrose.

Radiat. Transfer 46, 413-423 (1991).
7. A. D. Kim and M. Moscoso, "'Chebyshev Spectral methods for radiative transfer," SIAM J. Sci. Comput. 23,

2074-2094 (2002).
8. A. D. Kim and J. B. Keller, "Light propagation in biological tissue," J. Opt. Soc. Am. A 20, 92-98 (2003).

9. G. W. Kattawar and G. N. Plass, "Radiance and polarization of multiple scattered light from haze and clouds,"

AppI. Opt. 7, 1519-1527 (1968).
10. 1. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC

Press, Boca Raton, Fla., 1991).
I1. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized light to discriminate short-path photons

in a multiply scattering medium," Appl. Opt. 31(30), 6535-- (1992).

12. P. Bruscaglioni, G. Zaccanti, and Q. Wei, "Transmission of a pulsed polarized light beam through thick turbid

media: numerical results," Appl. Opt. 32(30), 6142--6150 (1993).
13. M. J. Rakovic, G. W Kattawar, M. Mehrbcolu. B. 1). Cameron, L. V. Wang, S. Rastegar, and (3. L. Cote, "Light

Baekscattering Polarization Patterns from Turbid Media: Theory and Experiment," App!. Opt. 38(15), 3399-3408
(1999).

14. S. Bartel and A. H. Hielseher, "Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly

Scattering Media," Appl. Opt. 39(10), 1580-1588 (2000).

#5731 - $15.00 US Received 15 November 2004; revised 13 December 2004; accepted 14 December 2004

(C) 2004 OSA 27 December 2004 / Vol. 12, No. 26 / OPTICS EXPRESS 6530



15. M. Moscoso, J. B. Keller, and G. Papanicolaou, "Depolarization and blurring of optical images by biological
tissue," J. Opt. Soc. Am. A 18(4), 948-960 (2001).

16. H. H. Tyncs, G. W. Kattawar. E. P. Zege, I. L. Katsev. A. S. Prikhach, and L. 1. Chaikovskaya, "Monte Carlo
and Multicomponent Approximation Methods for Vector Radiative Transfer by use of Effective Mueller Matrix

Calculations," Appl. Opt. 40(3), 400-412 (2001).
17. B. Kaplan, G. Ledanois, and B. villon, "Mueller Matrix of Dense Polystyrene Latex Sphere Suspensions:

Measurements and Monte Carlo Simulation," Appl. Opt. 40(16), 2769-2777 (2001).

18. X. Wang and L. V. Wang. "Propagation of polarized light in birefringent turbid media: A Monte Carlo study," J.
Biomed. Opt. 7, 279--290 (2002).

19. G. W. Kattawar. M. J. Rakovi6, and B. D. Cameron, "Laser backscattering polarization patterns firom turbid
media: theory and experiments," in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and
M. S. Patterson, eds., vol. 21 of 0S.4 TOPS, pp. 105 -110 (1998).

20. J. C. Ramella-Roman, "Imaging skin pathologies with polarized light: empirical and theoretical studies," Ph.D.
thesis. OG1 School of Science & Engineering at Oregon Health & Science University (2004).

21. H. C. van de Hulst, Light scatterikg by small particles (Dover, New York, 1981).

22. C. F. Bohren and D. R. Huffinan, Absorption and scattering of light by small particles (John Wiley & Sons,
1983).

23. R. Y. Rubinstein, Simulation and the Monte Carlo method (John Wiley & Sons, 1981).
24. J. von Neumann, "Various techniques used in connection with random digits," J. Res. Natl. Bur. Stand. 5, 36-38

(1951).
25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C (Cambridge university

press, 1996).
26. P.-E. Wolf and G. Maret. "Weak Localization and Coherent Backscattering of Photons in Disordered Media,"

Phys. Rev. Lett. 55(24), 2696-2699 (1985).
27. M. P. V. Albada and A. Lagendijk, "Observation of Weak Localization of Light in a Random Medium," Phys.

Rev. Lett. 55(24), 2692-2695 (1985).
28. E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent backscattering of light by disordered media: analysis of

the peak line shape," Phys. Rev. Lett. 56(14), 1471-1474 (1986).

29. J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser speckle and related phenomena, J. C.
Dainty, ed., pp. 9-75 (Springer-Verlag, Berlin, 1975).

30. 1). S. Saxon, "Tensor Scattering Matrix for the Electromagnetic Field," Phys. Rev. 100(6), 1771-1775 (1955).
31. B. D. Cameron, M. J. Rakovic, M. Mehrbeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cot,

"Measurement and calculationof the two-dimensional backscattering Mueller matrix of a turbid medium," Opt.
Lett. 23(7), 485-487 (1998).

32. 1. Berezhnyy and A. Dogariu, "Time-resolved Mueller matrix imaging polarimetry;' Opt. Exp. 12(19). 4635-
4649 (2004).

33. EMC is available at http://xvww.sci.ccny.cuny.edu! minxu.

1. Introduction

The propagation of polarized light in turbid media is fundamental to many practical appli-
cations of considerable interest including remote sensing of clouds and imaging of colloidal
suspensions and biological materials[1-4]. Due to the lack of analytical solutions to radiative
transfer[5] of polarized light within a bounded medium, numerical solutions[6-8] of the radia-
tive transfer equation and Monte Carlo simulations[9-18] of propagation of polarized light in
turbid media have been pursued extensively and applied to characterization of clouds, particle
suspensions, and biological materials.

Most Monte Carlo methods trace the Stokes vector I = (I, Q, U, V)T in simulation where

I•- KIE'IV2--I~2), Q) KIEII2IErI 2
, U (EPEr±EiE*, V= -i(E/Er-EIE,*),El and

E, are two orthogonal complex electric field components perpendicular to the propagation di-
rection, the superscript "T" denotes transpose, and () means ensemble average. Light scat-
tering involves a rotation of the Stokes vector to a local scattering reference fi'ame and the
multiplication of the Stokes vector by the 4 x 4 Mueller matrix which prescribes how polar-
ized light is scattered by an isolated particle in that reference frame. The Stokes vector is
summed up at the detector assuming the detected light is incoherent. Many implementations
of the above Monte Carlo approach to simulate polarized light propagation in turbid media
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have appeared in the literature[9-18]. Some recent work includes [13, 14, 16-18]. Symmetry
considerations[19], randomly polarized incident light[17], next event point estimators[17] and
other techniques[14, 16] have been investigated to improve the efficiency of the Monte Carlo
computation. Various implementations of the above Monte Carlo approach have also been com-
pared[20].

In this article, we present a Monte Carlo method based on tracing the multiply scattered

electric field to simulate the propagation of polarized light in turbid media. Multiple scattering
of light comprises a series of updates of the parallel and perpendicular components of the
complex electric field with respect to the scattering plane by the amplitude scattering matrix
and rotations of the local coordinate system spanned by the unit vectors in the directions of
the parallel and perpendicular electric field components and the propagation direction of light.
The phase of light accrues from phase delays due to the interaction of light with scatterers and
propagation through the host medium. In contrast with the conventional Monte Carlo approach
based on tracing the Stokes vector, the Electric Field Monte Carlo (EMC) method traces the
electric field and phase of light and makes it possible to simulate also coherent properties of
multiply scattered light. The algorithm of EMC is straightforward and can be easily adapted to

simulate the propagation of polarized light in optically active medium.
After outlining the theoretical formalism of the Electric Field Monte Carlo method in sec-

tion 2, we present EMC computations of the backscattering speckle pattern and the backscat-
tering Mueller matrix of an aqueous suspension of polystyrene spheres in a slab geometry in
section 3. Special considerations to improve the efficiency of computing the Mueller matrix in
the pure backscattering direction are detailed in section 3. We conclude in section 4.

2. Theoretical formalism

Light scattering by small particles is succinctly described by the amplitude scattering ma-
trix[21 ]. For spherical or randomly-oriented aspheric scatterers, the amplitude scattering matrix
is diagonal and depends only on the scattering angle 0 due to the symmetry[22]. The parallel

and perpendicular components of the electric field with respect to the scattering plane are scat-
tered according to Sj(O) where j = 2, 1, respectively[21].

The scattering of photons takes a simple form in the local orthonormal coordinate system
(m, n, s) where m and n are the unit vectors in the directions of the parallel and perpendicular
components of the electric field with respect to the scattering plane of the previous scattering
event and s is the photon's propagation direction prior to the current scattering [see Fig. I]. The
propagation direction s' of the photon after the current scattering is given by:

s' = msin 0 cos 0 + nsin 0sin 0 ++scos 0 (1)

where 0 and 0 are the scattering and azimuthal angles of the current scattering respectively.
The current scattering plane is the plane spanned by s and s' . The unit vectors in the direc-

tions of the parallel and perpendicular electric fields with respect to the current scattering plane
are given by

el = mcoso+nsino (2)

e2  = -msino+ncoso

prior to scattering and

ce, = pmcos0+'pnsin0-sin0s, (3)
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Fig. 1. A photon moving along s is scattered to s' with a scattering angle 0 and an azimuthal
angle 0 inside a local coordinate system spanned by orthononnal bases (m,n,s). el, 2 and
e', are the unit vectors parallel and perpendicular to the current scattering plane spanned

by s and s' prior to and after scattering. The local coordinate system (m, n,s) is rotated to
(in', n', s') after scattering.

e'2  = e 2

after scattering, respectively. The local coordinate system (i, n, s) is rotated to (m', n',s')
whose m' e=e and n' = e' after scattering. The incident electric field E = Elm + E2 n is
scattered to E' = El m' + E~n' whose parallel and perpendicular components are given by
E' = S2E. e1 and E2 = S1 E . e2, respectively.

We can now summarize the updating rules of the local coordinate system and the electric
field in EMC. For each scattering with the scattering angle 0 and the azimuthal angle 4, the

local coordinate system is updated by

Snr =A (nm 

(4)

with / cosOcosq cosOsino -sinO
A - -sin os cos 0 0 / (5)

sin 0 cos sin 0 sin cos 0

and the electric field by

E _ B(E (6)

2El E2
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with

B = [F(O0)1 1 2 ($S 2 cos 0 S2 sin• (
B -Ssin4) SCOS4 j (7)

We have introduced an extra factor F(O, 4), the scattered wave intensity propagating along the
(0, 0) direction, given by

F(O4) (lS212 cos2 + S12sin2 )2 E1 2
- (g212 sin2 0 + ISl,12 cos2 0) IE2 l2

+2 (15212 _ IS, 12) cos 0sin 091 [El (E2)] (8)

to normalize the light intensity. The intensity of the incident light E 2 12+ IE212 = I is assumed

unity in Eq. (8). The scattered light intensity IE1 12 + JE 12 is then conserved (equal to unity)
in the series of scattering events. Absorption of light, if any, is accounted for by adjusting the

photon weight as in the conventional Monte Carlo simulations[23].
The orthogonal matrix A rotates the local coordinate system (m, n, s) each time the pho-

ton is scattered by a scatterer. The electric field is updated simultaneously by the matrix B.
The free path between consecutive scattering events is sampled in the same fashion as that in
a conventional Monte Carlo method. The state of a multiply scattered photon is specified by

the final local coordinate system (m("), n('),s('l)) after consecutive rotations, the final com-

plex electric field components El.), after consecutive updates, and the optical path I inside the

host medium where n denotes the number of scattering events the photon have experienced be-

fore being detected. The detected electric field is given by E 1 = [E8")m(') +E(",)(")1 exp(ikl)

where k = 2ir/X is the wave number, X is the wavelength of light in the host medium, and we
have assumed a convention that the temporal dependence of a plane wave of frequency (o is
exp(-ikot). The phase of the detected photon accrues from phase delays due to the interaction

of light with scatterers and propagation through the host medium. The photon weight w, unity at
incidence, is multiplied by the albedo of the scatterer at each scattering event. Once the photon
hits a detector, the electric field at the detector is increased by w1 1/ 2E,1 and the Stokes vector is
increased by the Stokes vector computed from the electric field w1 / 2Ed.

Propagation of multiply scattered light is describable by the radiative transport equation in
which any interference effects are neglected[5]. The conventional Monte Carlo methods based
on tracing the Stokes vector of light solve the radiative transfer equation numerically and do not
include any correlation effect of multiply scattered light. By tracing the electric field associated
with a wave packet, EMC provides much more detailed information about the propagation of

multiply scattered light than just the transfer of energy. EMC should be regarded as a method
to sample the probability distribution of the electric field at selected spatial positions where
the detectors are located. Detectors of finer resolution than the speckle size are required to
resolve the interference pattern of light well. Detectors of a larger cell size will smear the
interference pattern. It should be noted that EMC only probes one instantaneous picture of the
disordered medium when accumulating the electric field coherently while it yields the detected
light ensemble averaged over all pictures of the disordered medium when accumulating the
Stokes vector incoherently. This point is addressed in more detail in section 3.1.

One key step in the Monte Carlo simulation of polarized light is the sampling of the scat-
tering angles (0, 0) which distribute according to the normalized phase function p(O, 0)
F(0, 10)/rQscaX2 where Q,,, is the scattering efficiency, x = ka is the size parameter, and a
is the radius of the particle. The rejection technique[24, 25] has been widely used to sample

such a distribution function. The procedure is to choose a doublet (p - cos 0, 0) where p and
0 are uniformly distributed over [- 1,1] and [0, 27r] respectively and a random number f uni-
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formly distributed over [0,max0, p(O, 0)], the doublet (ji, o) is accepted as the scattering and

azimuthal angles iff < p(arccos jt, 0), otherwise generate a new doublet (p, 0), a new f and
start over. Each trial involves one Mie calculation of the amplitude scattering matrix at that trial
scattering angle. The number of rejections per scattering event is large (on the order of one
for Rayleigh particles and can be much more significant for larger particles). This limits the
efficiency of the Monte Carlo simulation. Mie calculations of the amplitude scattering matrix
are hence usually performed on a fixed set of scattering angles in advance to generate a table of
scattering matrices and reduce the computation load.

We generate the scattering angle 0 by drawing of one random number uniformly distributed
over [0, 1] and looking up an inverse table of the marginal distribution function

forr IS22 + ISi !2
p(0) = p(0, I2)d 2+ - IS] 12 (9)

0 Qscax2

which does not depend on the electric field and is pre-calculated before simulation. The az-
imuthal angle 0 is then obtained by the rejection method for the conditional probability
p(O 1) = p(O, 0)/p(O). One Mie calculation for the looked up scattering angle is required
if the table of scattering matrices is not generated in advance for each scattering event.

A different sampling strategy is to sample the scattering angle 0 according to p(0) while
to sample 0 uniformly distributed over [0,21r]. At the same time, we modify F(O, 0) in the

update rule of the electric field (6) to F'(0) = (Is212 + ISI 12) /2 such that the light intensity is

no longer conserved in the series of scattering events. This strategy saves the rejection sampling
of the angle 0 but the simulation result is prone to be contaminated by hotspots and has a larger
variance compared to the first strategy because it is unfavorable to the statistical variance when
photons of varying weights, rather than equal weights, are accumulated by the detector. The
second sampling strategy is not used in simulation.

3. Results and Discussion

3.1. Backscattering speckle pattern

Due to the large ratio between the velocities of light and of the scatterers, coherent light
probes an instantaneous picture of the disordered medium and realizes speckle patterns when
the multiple scattered light emerges from within the medium. The a = x,y,z component of
the outgoing light intensity I(0, 0) in direction (0, 0) on the boundary of the medium com-
prises a multitude of independently-phased additive complex electric fields in that direction
(outside the coherent backscattering cone[26-28]) and follows a Rayleigh distribution[29]
p(l0 ) = , exp(-la/ (IQL) where (I,) is the mean intensity. The normalized light intensity
71 = I•/(I 5) follows the exponential distribution exp(-r7).

We perform EMC to study the plane wave light backscattering fromn an aqueous solution of
polystyrene spheres inside a slab. Incident light is polarized in the x direction and propagates in
the z direction (normal to the surface of the slab). The size of the polystyrene sphere is 0.46,u m.
The wavelength of the incident wave is 2 ,,,a = 0.52p m in vaccum. The refractive indices of the
polystyrene sphere and water is nst = 1.59 and 1 bg = 1.33, respectively. The mean scattering
length of light inside the solution is 1, = 2.80pm with 2frnbgs/A,,ac = 45. The thickness of
the slab is L, = 4&,. Total 5 x 108 photons are launched into the medium. Both backscattering
electric field and Stokes vector are recorded versus the direction (0, 0) of the backscattered
light where 0 is the angle away from the surface normal (0 < 0 < r/2) and 0 is the azimuthal
angle (0 < 0 _< 27r). The ranges of the angles 0 and 0 are uniformly divided into 1125 and 360
bins in simulation, respectively.
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Fig. 2. (a) Speckle pattern formed by the angular-resolved backscattering light. (b) Nor-
malized speckle !,/ (1,) follows a negative exponential distribution.

EMC, like an experiment probing one static random medium, only probes one instanta-
neous picture of the disordered medium. The ensemble average is realized in experiments, for

example, through the movement of the scatterers in the medium or sampling different regions
of the random media. EMC, as a numerical experiment, can record both the electric field and
the Stokes vectors in simulation. The recorded electric field added coherently yields the emer-
gent light from the one instantaneous picture of the disordered medium. The recorded Stokes
vector added incoherently, on the other hand, yields the emergent light ensemble averaged over
all pictures of the disordered medium.

Figure 2(a) displays the x component Ix/ (It) where Ix = JEx12 and (IQ) is estimated by
the mean of the first and second Stokes vectors. The appearance of speckles is obvious in
Fig. 2(a). The first order statistics about 1Q (I) can be computed from its histogram. This
yields a negative exponential distribution exp(-r7) as expected [see Fig. 2(b)]. The other two y

and z components of light behave similarly and not displayed.

3.2. Backscattering Mueller matrix

We then compute the backscattering Mueller matrix from a pencil beam incident normally on

an aqueous solution of polystyrene spheres inside a slab. The size of the polystyrene sphere is
2pm. The wavelength of the incident wave is Aa,, = 0.63ym in vacuum. The refractive indices
of the polystyrene sphere and water is nsot = 1.59 and nbg = 1.33, respectively. The thickness
of the slab is L, = 44,. Total 3 x 108 photons are launched into the medium.

To improve its efficiency of the Monte Carlo simulation, we combined symmetry consid-
erations[ 19], randomly polarized incident light[17] and the next event point estimator[ 17] in
computing the backscattering Mueller matrix. The computation time is less than 2 hours for

each l10 photons launched using one Pentium III 1GHz CPU. In computation of the Stokes
vector in Monte Carlo simulations, one should note that the Stokes vector upon which Mueller
matrix is defined depends on the reference system used. The backscattered Stokes vector is

defined in the reference system whose x'y'z' axes coincide with -xy, -z axes of the reference
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system of the incident Stokes vector respectively.
In the backscattering geometry investigated here where the incident light is normal to the

surface of the medium and the outgoing beam is exactly backscattering, the Mueller matrix
MbS(p, 0) of the medium shall satisfy the following relation[19, 30]

Mb((p, 4) = R(-0 )Mbs(p, 4 = 0)R(-O) (10)

where p, 4) is the polar coordinate of the position of the outgoing beam and R(O) is the rotation

matrix
1 0 0 0

R(0) = 0 cos2o sin24 o 0) (11)
0 -sin2o cos2o• 0
0 0 0 1

The reduced Mueller matrix Mb0(p) =- MbS(p, 4) = 0) relates

A4o i (12)

where I>,o are the incident and outgoing Stokes vectors with respect to the 4 0 plane.

In our simulation, the incident electric field is randomly polarized as Ei = cos ae-'iP +
sin aei/3• where a G (0, 7r/2) and 13 c (0, ir) are uniform random numbers. The corre-
sponding incident Stokes vector with respect to the xy axes (i.e., the y = 0 plane) is 1i =
(1,cos2a, sin2a cos2fi,sin2asin2l3) T . The incident Stokes vector with respect to the ) = 0
plane is given by V = R(0)I,. The ensemble average of , (I)v over the random variates a and
13 yields

Noting that the inverse of the matrix t is given by

1 0 0 0

0 3- o cos4 sin4o 0D=[(I 1= 0 sin44) 3 + cos44) 0 '(14)

0 0 0 4

we obtain
M0bS(p) = 1' (1')TD (15)

from Eq. (12). The backscattering Mueller matrix is then computed from the reduced Mueller
matrix by Eq. (10).

The computed backscattering Mueller matrix is displayed in Fig. (3). Each matrix element
is given as a two-dimensional image of the surface, 20/. x 204, in size, with the laser being

incident in the center. The displayed Mueller matrix has been normalized by the maximum light
intensity of the (1, 1) element of Mbs. Only 7 elements of the Mueller matrix are independent.
The symmetrical relation between different elements of the Mueller matrix has been considered
by Kattawa et. al.[ 19, 31 ]. The symmetry of the backscattering Mueller matrix in Fig. (3) agrees
with Kattawa et. al.[ 13, 19, 31] and Berezhnyy et. al.[32]. The elements MA'4 and A44" vanish as
predicted by the theory[13, 19].
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Fig. 3. Backscattering Mueller matrix for the slab. All 4 x 4 matrix element are displayed

as a two-dimensional image of the surface, 204, x 201s in size, with the laser being incident
in the center. The displayed Mueller matrix has been normalized by the maximum light
intensity of the (1,1) element. The parameters of the slab is given in the text.

It is more instructive, though, to display the reduced Mueller matrix MoS(p). Each element
of the reduced Mueller matrix is given as a one-dimensional curve versus the distance p from

the origin in Fig. (4). The reduced backscattering Mueller matrix is found to be 2 x 2 block
diagonal. The first two elements of the Stokes vector 11,2 are then decoupled from the rest two

elements of the Stokes vector 13,4. This means, for example, the backscattered light due to a

nonnally incident light linearly polarized in the 4 = 0 plane (V = (1, 1,0, O)T) has no circular
polarization component (the fourth element of Stokes vector I'- Mbs(p)li is always zero) with
respect to the 0 = 0 plane. The circular polarization component of this backscattered light is no

longer zero with respect to a different reference friame rather than the • 0 plane.

4. Conclusion

In conclusion, we have presented a Monte Carlo method based on tracing the electric field for

simulating polarized light propagation in turbid media. The Electric Field Monte Carlo method
has been successfully used to study the backscattering speckle pattern and the backscattering
Mueller matrix of an aqueous suspension of polystyrene spheres in a slab geometry. The tracing

of the electric field in simulation makes the Electric Field Monte Carlo method possible to
simulate also coherent properties of light. The EMC source code will be put in the public
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domain[33].
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APPENDIX 3

Three-dimensional localization and optical
imaging of objects in turbid media with
independent component analysis

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano

A new approach for optical imaging and localization of objects in turbid media that makes use of the
independent component analysis (ICA) from information theory is demonstrated. Experimental arrange-
ment realizes a multisource illumination of a turbid medium with embedded objects and a multidetector
acquisition of transmitted light on the medium boundary. The resulting spatial diversity and multiple
angular observations provide robust data for three-dimensional localization and characterization of
absorbing and scattering inhomogeneities embedded in a turbid medium. ICA of the perturbations in the
spatial intensity distribution on the medium boundary sorts out the embedded objects, and their locations
are obtained from Green's function analysis based on any appropriate light propagation model. Imaging
experiments were carried out on two highly scattering samples of thickness approximately 50 times the
transport mean-free path of the respective medium. One turbid medium had two embedded absorptive
objects, and the other had four scattering objects. An independent component separation of the signal, in
conjunction with diffusive photon migration theory, was used to locate the embedded inhomogeneities. In
both cases, improved lateral and axial localizations of the objects over the result obtained by use of
common photon migration reconstruction algorithms were achieved. The approach is applicable to
different medium geometries, can be used with any suitable photon propagation model, and is amenable
to near-real-time imaging applications. © 2005 Optical Society of America

OCIS codes: 170.7050, 170.5280, 170.3660, 100.3190, 100.3010.

1. Introduction gorithms for image reconstruction 65 hold promise for

Optical tomographic imaging of objects in turbid me- realization of these potentials of optical tomography.
dia is an aggressively pursued area of contemporary Researchers today use continuous-wave, amplitude-
research that derives impetus from a variety of po- modulated, or ultrashort light pulses to probe the
tential practical applications. 1- 17 Of particular inter- target(s) embedded in the turbid medium and obtain
est are medical applications in which optical steady-state, frequency-domain, or time-varying op-
tomography and spectroscopy have the potential to tical signals, respectively, by using a variety of detec-
provide diagnostic information about tumors in tion schemes. 2,4,5,"," 9 Multiple scattering of light in
breast and prostate tissue and functional information turbid media, such as breast tissue, precludes direct
about brain activities. Simultaneous developments in imaging of embedded targets. One then resorts to an
experimental apparatus and techniques for object in- inverse image reconstruction (IIR)6,5 approach that
terrogation and signal acquisition, 2,4,5,1S,19 analytical uses a forward model for light propagation, the mea-
models for light propagation,10 ,20 -22 and computer al- sured light intensity distribution on the boundary of

the turbid medium, and an inversion algorithm to
generate a map of the optical properties, such as the
absorption coefficient (R.o) and the scattering coeffi-

The authors are with the Department of Physics, the Institute cient ([), of the medium and the embedded objects.
for Ultrafast Spectroscopy and Lasers, New York State Center of The objects are desired to appear as localized inho-
Advanced Technology for Ultrafast Photonic Materials and Appli- mogeneities in the spatial distribution of these opti-
cations, City College of New York, 136th Street Convent Avenue cal coefficients.
J419, New York, New York 10031.

Received 14 July 2004; revised manuscript received 24 Novem- The inversion problem is ill posed, and its adequate
ber 2004; accepted 5 December 2004. theoretical treatment is critical to the achievement of

0003-6935/05/101889-09$15.00/0 a unique solution.8  Although three general
© 2005 Optical Society of America approaches-Radon-transform-type straight line in-
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tegrals, 23 modeling of light scattering as a Markov G(rd, r) describes that from the object to the detector
random process, 24

,
25 and development and inversions at rd. To correlate the perturbations in the light in-

of a partial differential equation (PDE) of diffusion tensity distributions, AIk(Xd, Yd), with the objects em-
type-are pursued, it is the PDE-based methods that bedded in the turbid medium, we assumed that these
seem more practical in consideration of the signal-to- objects illuminated by the incident wave are virtual
noise (S/N) ratio of the data and computationally sources and that Alk(Xd, Yd) are taken to be some
efficient methods available for solution.6,8 The com- weighted mixtures of signals arriving from these vir-
monly used PDE is the diffusion approximation (DA) tual sources to the detector plane. ICA assumes these
of the radiative transfer equation (RTE). Both itera- virtual sources to be independent, and based on that
tive reconstruction and noniterative linearized inver- assumption it provides the independent components.
sion approaches have been used to solve the inversion The number of leading independent components is
problem, which is weakly nonlinear with limited suc- the same as the number of the embedded objects. The
cess. The reconstruction of images with adequate effective contributions of independent components to
spatial resolution and optical contrast and the deter- the light intensity distribution on the source and de-
mination of the location of the inhomogeneities re- tector planes are proportional to the projection of the
main formidable tasks. The time required for data Green's function, G(r, r,) and G(rd, r), on the source
acquisition and image reconstruction is another im- and detector planes, respectively. The location and
portant consideration. characteristics of the objects are obtained from fitting

In this article we present a simple and fast ap- either or both of these projections to those of the
proach that employs (for test of concept) continuous- model Green's function in the background medium.
wave transillumination measurements and a novel The remainder of the article is organized as follows.
algorithm based on independent component analysis In Section 2, we present the general theoretical
(ICA)26,27 from information theory to locate tumorlike framework for OPTICA and then discuss the specific
inhomogeneities embedded in breast-simulating tur- case of a turbid medium in the form of a slab. How-
bid media. ICA has been successfully applied in a ever, the approach can be adapted to any arbitrary
variety of other applications.2 7-30 We refer to this geometry. Scattering and absorbing objects are con-
information-theory-inspired approach as optical sidered separately. Section 3 presents the experimen-
tomography that uses independent component anal- tal methods, materials, and parameters. The results
ysis, abbreviated as OPTICA. Experimental arrange- are presented in Section 4. Finally, the implications
ment for OPTICA realizes a multisource illumination of these results and the scope of OPTICA are dis-
and multidetector signal-acquisition scheme that cussed in Section 5.
provides a variety of spatial and angular views that
are essential for three-dimensional (3-D) object local-
ization. Multisource illumination is realized in prac- 2. Theoretical Formalism
tice by scanning the input surface (or source plane) In the linearized scheme of inversion, the perturba-
across the incident beam in a two-dimensional (2-D) tion of the detected light intensities on the bound-
array of points (xsk, Ysk; k = 1, 2, . . . , n). Correspond- aries of the medium (the scattered wave field) due to
ing to illumination of the kth grid point on the source absorptive and scattering objects (inhomogeneities)
plane, a charge-coupled device (CCD) camera records is given by',13

the spatial intensity distribution, Ik(Xd, Yd), on the exit
surface (or detector plane). Every pixel of the CCD
camera thus acts as a detector implementing the mul- 3
tidetector measurement arrangement. The differ- Fsca(rd, rs) =- G(rd, r)8.(r)cG(r, r,)d 3r
ence, A~k(xd, Y), between the above-mentioned

spatial intensity distribution, Ik(Xd, Yd), and an esti-
mated background (say, an averaged intensity distri- - d3r8D(r)cVrG(rd, r). VrG(r, r,)
bution from different source scanning positions)
provides the perturbation in the spatial intensity dis- (1)
tribution in the detector plane for illumination at the
kth grid point.

The localization algorithm is based on the premise in the DA (Ref. 31) when illuminated by a unit point
that each object (or inhomogeneity) within the turbid source, where r,, r and rd are the positions of the
medium alters the propagation of light through the source, the inhomogeneity, and the detector, respec-
medium. Consequently, the spatial distribution of the tively; 8a = P'a,obj - Vpa and 8D = Dobj - D are the
light intensity at the detector plane of the medium is differences in the absorption coefficient and the dif-
different with embedded inhomogeneities than that fusion coefficient, respectively, between the inho-
without them. The influence of an object on Ahk(Xd, Yd) mogeneity and the background; c is the speed of
involves propagation of light from the source to the light in the medium; and G(r, r') is the Green's func-
object, and from the object to the detector, and can be tion describing light propagation from r' to r inside
described in terms of two Green's functions (propa- the background turbid medium of the absorption and
gators): The first G(r, rJ) describes light propagation diffusion coefficients [, and D, respectively. We do
from the source at r, to the object at r, and the second not explicitly include the modulation frequency wo of
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the incident wave in the arguments of Eq. (1) for Here s(r,) = [qG(rl, r.),. . . , qjG(rj, rs)]T represents
clarity. The following formalism can be applied the J virtual sources; i.e., the J inhomogeneities illu-
to continuous-wave, frequency-domain, and time- minated by the incident wave, A is the mixing matrix
resolved measurements. The time-domain measure- given by
ment is first Fourier transformed over time to obtain
data over many different frequencies. Although Eq.
(1) starts with DA, it should be emphasized that the G(rd,, ri) G(rd,, r 2) ... G(rd,, rj)
formalism is not limited to DA, but can be used with 1 G(rd, r) G(rd,, r2) G(rd, rj)
other models of light propagation in turbid media, A =G , • , (5)

such as the cumulant approximation, 20 ,22,32 the J
random-walk model,10, 24 and radiative transfer' 7,33  G(rd, r,) G(rd,,, r2) ... G(rd,,, rj)_
when they are linearized.

The Green's function G for a slab geometry in the
diffusion approximation is given by whose jth column (mixing vector) provides the

weight factors for the contributions from the fth
G(r, r')--G(p, z, z') inhomogeneity to the detectors, and x(r,) =L--zsca(rdl, r),. .. , -Psca(rd, , rs)]T is the observed

1 exp(-Krk) exp(- Krk) light intensity change. The superscript T denotes

exp(--___[rk +r (2) transposition. The incident light source scans a total
of n positions r 1, . ... , rn sequentially. For each

[2 + 2112 source position r.1, the observation is made over m
rk [p + (z + z' ±2kd)]/ positions rd,,... .rd. Each set of such measurement

is considered data at one temporal sampling point, as
for an incident amplitude-modulated wave of modu- used in the conventional instantaneous linear mix-
lation frequency o, where k = 0, + 1, ±2,..., p = ture model. 38 The multisource, multidetector data set
[x - x')2 + (y - y,) 2]1/ 2 is the distance between the two x(r8 ) thus describes signals observed in m channels
points r = (x, y, z) and r' = (x', y', z') projected onto (m detectors) from J virtual sources (or J inhomoge-
the xy plane, K =[(pa - io)/c)/D]"/2 chosen to have a neities) simultaneously over n discrete temporal
nonnegative real part, and the extrapolated bound- points (n spatial scanning points). One absorptive
aries of the slab are located at z = 0 and z = d inhomogeneity is represented by one virtual source
= L, + 2z,, respectively, where L, is the physical qjG(rj, rJ). The virtual source qjG(rj, rJ) represents
thickness of the slab and the extrapolation length ze the individual inhomogeneity illuminated by the in-
should be determined from the boundary condition of cident wave and is similar to the concept of the sec-
the slab.3 4 -36 Equation (2) serves as the model ondary source in Huygen's principle.39 The role of
Green's function for the uniform background medium detectors and sources can be interchanged owing to
of a slab geometry. The modulation frequency co the reciprocal property of light propagation.
= 0 for continuous-wave light. The principal assumption of this formalism is that

In practice, the projections of the Green's function the virtual source qjG(rj, rJ) at thejth inhomogeneity
on the source and detector planes are determined is independent of the virtual sources at other loca-
from the measured perturbations in the light inten- tions. Under this assumption, ICA can be used with
sity distribution through independent component the observations from the light source scanned at
analysis. The comparison with the Green's function n >> J positions to separate out both virtual sources
computed with Eq. (2) is then used to locate and s(r,) and the mixing matrix A. 26,37

characterize the inhomogeneities. We develop the ICA is a statistical approach to separate indepen-
formalism for absorptive and scattering inhomoge- dent sources from linear instantaneous or convolu-
neities in the Subsections 2.A and 2.B, respectively. tive mixtures of independent signals without relying

on any specific knowledge of the sources except that
A. Absorptive Inhomogeneity they are independent. The sources are recovered by a
The assumption that absorptive inhomogeneities are minimization of a measure of dependence, such as
localized [that is, thefth one is contained in volume Vj mutual information, 26,27 between the reconstructed
centered at r.(1 -j -< J)] enables one to rewrite the sources.30 ,37 The recovered virtual sources and mix-
scattered wave field in Eq. (1) as ing vectors from ICA are unique up to permutation

and scaling.30 ,37

j The two Green's functions of light propagating
- ca(rd, r,) = 3 G(rd, rj)qjG(rj, rI), (3) from the source to the inhomogeneity and from the

j=1 inhomogeneity to the detector are retrieved from the
separated virtual sources s(r,) and the mixing matrix

where qj = 8p.,(rj)cVj is the absorption strength of the A. The jth element sj(r,) of the virtual source array
jth inhomogeneity. The scattered wave may be inter- and the jth column aj (mixing vector) of the mixing
preted as an instantaneous linear mixture37  matrix A provide the scaled projections of the Green's

function on the source and detector planes, G(rj, rJ)
x(r,) = As(r,). (4) and G(rd, r/), respectively. We can write
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sj(r8 ) = cjG(rj, r.), medium, and Vj is the volume of the jth scattering
inhomogeneity, the scattered wave field can be trans-

aj(rd) = jG(rd, rj), (6) formed to

where cj and Pj are scaling constants for the jth in- -J4sca(rd, r5) = • gz(rj, rd)qj'g 5(rj, r5) + , Pdj

homogeneity. j=1 j=1
Both the location and the strength of thefth object X cos 0dgl(rj, rd)qj'pj cos Osg,(rj, r,)

can be computed by a simple fitting procedure by use J,
of Eq. (6). We adopted a least-square fitting procedure + • Pdj sinOdg (rj, rd)qj'p j
given by X sin 05g1 (rj, r.), (11)

min 1 [fj-'sj(r8 )-G(rj, r ,)]2 + • [pj-'aj(rd) where Pdj = [(Xd -_ X)2 + (Yd - yj)2 ]112, P"j [(X5
,Lr - X) 2 +- (Ys -- yj)21/ 2, and 0d and 0, are the azimuthal

- G(rd, rj)]}. (7) angles of rd - rj and r5 - rj, respectively. This scat-
tered wave can be regarded as a mixture of contribu-

The fitting yields the location rj of and the two scaling tions from (3J') virtual sources:

constants aj and Pj for the jth inhomogeneity, whose
absorption strength is then given by qj = otjcj, qj'g,(rj, r.), q'p,;j COS 0 gJ(rj, r.),

B. Scattering Inhomogeneity qj'p5 j sin O0g,(rj, r.), (12)

For scattering inhomogeneities, under the assump-
tion that the inhomogeneities are localized in a few with mixing vectors
regions, the same analysis can be carried out as that
for absorptive inhomogeneities. The only modifica- g5(rj, rd), Pdj COS OdgI(rj, rd), PU sin Odg 1(rj, rd),

tion is that up to three virtual sources may appear for (13)
one scattering inhomogeneity corresponding to the
x, y, z components in the dot product VrG(rd, r). where 1 -- j : J', respectively. There are in general
VrG(r, r5) = a.G(rd, r)a0G(r, r.) + ayG(rd, r)ayG(r, r.) three virtual sources of specific patterns (one cen-
+ aG(rd, r)aG(r, r5) in Eq. (1). trosymmetric and two dumbbell shaped) associated

Introducing two auxiliary functions with one scattering inhomogeneity, whereas only one

centrosymmetric virtual source is associated with one
1 + [ exp(- Krk+) absorptive inhomogeneity. This difference may be

r ')[( used to discriminate absorptive inhomogeneities
g1(r, r') = (rk÷ + 1) (rk) from scattering inhomogeneities. However, for scat-

exp(- Krk-)] tering inhomogeneities deep within turbid media,
- (Krk- + 1) - V , (8) only the qj'g5(rj, r5) virtual source remains significant

(rk ~and the other two are much diminished. In such a

situation, other corroborative evidence, such as mul-
1 ÷tiwavelength measurements, are required to deter-

g5(r, r') k 4D >.J(z - z' + 2kd)(Krk÷ + 1) mine the nature of inhomogeneities. Both the
I location and the strength of thefth scattering object

"exp(- Krk+) (are computed by fitting the retrieved virtual sources
ex(rk+) - (z + z' - 2kd) and mixing vectors to expressions (12) and (13), re-

spectively.
exp(- Krk-) No specific light propagation model is assumed in

"× (Krk + 1) (r-)3 ' (9) ICA. The only assumption is that virtual sources are
mutually independent. The number of inhomogene-
ities within the medium is determined by the number

and the scattered wave due to scattering inhomoge- of the independent components presented in the mul-
neities can be rewritten as tisource, multidetector data set. The analysis of re-

trieved independent components from ICA then
localizes and characterizes the absorptive and scat-

4•om(rd, r s) - d3 rD(r)c{f[(x - xd)(x - x) tering inhomogeneities inside the turbid medium in
which an appropriate model of the light propagator is

" $(Y - YA)Y - Ys;)]g(r, rd)g (r, r8) adopted. When the noise level is high or systematic
errors are present, or both, extra independent com-

"+ g(r, rd)gz(r, r,)}. (10) ponents may appear. Only the leading independent
components need to be analyzed to detect and char-

Denoting the scattering inhomogeneities as qj' acterize the inhomogeneities of interest, and other
= 8D(rj)cVj', where c is the speed of light in the components can be discarded.
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Y 250 mm Y166

x 1 mx40

............ i..__.... ......... .... . . . . . . . . . . . .

I -- - ) Fig. 2. Schematic diagram of specimen 2 obtained from Univer-

/ sity College London. It is a solid rectangular block embedded with
four 5-mm-diameter and 5-mm-long scattering cylindrical objects

Z with their centers on the central plane. The absorption and scat-

Fig. 1. Schematic diagram of specimen 1 comprising an tering characteristics of the specimens and the lateral positions of

Intralipid-10% suspension in water with two long cylindrical ab- the four cylinders are described in the text.

sorbing objects of absorption coefficient 0.23 mm-'.

22 mm apart. The distance between neighboring
cylinders is 11 mm. Further details about the slab

3. Experimental Methods and Materials may be obtained from an article published by Hall
Two tissue-simulating phantoms with absorption et al.42

and scattering coefficients within the reported range The experimental arrangement used for imaging
of values for healthy human breast tissue were used of these two specimens (1 and 2) is shown schemat-
in the study reported here. 40  ically in Fig. 3. For cw measurements, a 200-pm

The first specimen (1), shown schematically in Fig. fiber delivered a beam of 784-nm light from a diode
1, was a 250 mm X 250 mm X 50 mm transparent laser (Ocean Optics R-2000) to illuminate the input
plastic container filled with Intralipid-10% suspen- surface (or source plane) of the specimen. A cooled
sion in water. The concentration of Intralipid- CCD camera set at an acquisition time of 150 ms
10% was adjusted 41 to provide a transport length 1, recorded 2-D intensity patterns of the light trans-

S1 m m and an absorption coeffi cient p.0  = m itted through the opposite side of the slab speci-
0.003 mm-1 at 785 nm, emulating those of human men. For time-resolved measurements, we used a
breast tissue. Two cylindrical glass tubes (outer di- 1-mm-diameter collimated beam of 784-nm, 150-fs,
ameter, 8 mm; inner diameter, 6.98 mm; and length, 1-kHz repetition rate light pulses from a Ti:sap-
250 mm) were filled with an Intralipid-10% suspen- phire laser and amplifier system 43 for sample illu-
sion to provide the same scattering coefficient, but
the absorption coefficient was changed to 0.023 mm-1
by the addition of absorbing ink. The two absorptive x
rods are placed at (x, z) = (24, 29) mm and (x, z) Scanning
= (47, 33) mm, respectively, with the axes of cylin-
drical tubes along y.

The second specimen (2), loaned to us by J. C. LASER CCD
Hebden of University College London and displayed
schematically in Fig. 2, was a 166-mm-long, 82-mm-
wide, and 55-mm-thick slab made of materials with a Sample X I
reduced scattering coefficient pRs' - 0.9 mm-' (trans- -
port length, 1, - 1.1 mm) and an absorption coeffi-
cient p. -- 0.006 mm- 1. The slab contained four 5-
mm-diameter, 5-mm-long cylindrical inhomogene-
ities. The center of each cylinder was located in the
plane halfway between the front and the back faces Y
of the slabs. The absorption coefficient of each cyl- Source Detector
inder was 0.006 mm-', the same as that of the ma- plane plane
terial of the slab, but the scattering coefficients Fig. 3. Schematic diagram of the experimental arrangement for
were 4, 2, 1.5, and 1.1 times greater. The first and imaging objects embedded in a turbid medium. Inset shows the 2-D
the third cylinders, and the second and the fourth array in the input plane that is scanned across the incident laser
cylinders, are on two horizontal lines approximately beam.
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#0

mination. An ultrafast gated intensified camera r 1
system (UGICS), which provided a FWHM gate
width variable from 80 ps to 6 ns, recorded the 2-D
intensity patterns of the light transmitted through 0.6

the opposite side of the slab. Computer-controlled 6

xy translation stages scanned the specimens in an 0..

array of points in the xy plane, as displayed in Fig. 3. 0.2

For the long cylindrical tubes in specimen 1, a line 0.2

scan of 16 points with a step size of 2.5 mm along the 20 40 0 20 4o

x axis was enough to obtain the (x, z) locations of the
absorbing cylinders. An array of 20 × 18 points with 10.

a step size of 2.5 mm across the lateral positions of 0.

the four inhomogeneities in specimen 2 was
scanned to obtain their locations.

0.2
04

4. Results
0,2

Temporal profiles of the transmitted pulses were 20 40 20 40

m easured by use of the U G IC S in the scan m ode w ith ................................................ I ................................................
an 80-ps gate width. The average optical properties of 0.e
the turbid medium were estimated by fitting the tem- 06 0.6

poral profiles to the DA of the RTE for a slab geometry. jo6 V 0.6 a/

ICA of the perturbations in the spatial intensity I/
distributions provided the corresponding indepen-
dent intensity distributions on the source and de- 0.2 0.2

tector planes. ICA-generated independent intensity
0 - --- ----- ------.... ... d......0 ..................... ....... .. .distributions on the source and detector planes are 0 20 40 60 0 20 40 . .

shown in the first and second rows, respectively, of X(MM) x M)

Fig. 4 for the two absorbing cylinders in specimen 1. Fig. 4. Normalized independent spatial intensity distributions as
The locations of the absorbing cylinders are ob- a function of the lateral position x at the input (or source) plane

tained from fitting these independent component (first row) and the exit (or detector) plane (second row) generated

intensity distributions to those of the DA in a slab by ICA for the two absorbing cylinders in specimen 1. The hori-
zontal profile of the intensity distributions on the source plane

[Eq. (2)]. The first cylinder is found at x = 24 mm, (diamond) and on the detector plane (circle) are displayed in the
29 mm away from the source plane and 21 mm away third row. Solid curves show the respective Green's-function fit
from the detector plane. The second cylinder is found used for obtaining the locations of the objects.
at x = 47 mm, 33 mm away from the source plane
and 17 mm away from the detector plane. The (x, z)
coordinates of both the cylinders agree to within depth of the cylinders agree well with their known
0.5 mm of their known locations. The absorption center positions of 27.5 mm. The lateral positions are
strengths of the two rods are estimated by use of a determined to be (62, 63), (48, 33), (33, 62), and
least-square fitting procedure [Eq. (7)]. The resolved (18, 33) mm for the four scattering cylinders (see Ta-
absorption strengths are q, = 0.152 mm2/ps and q2  ble 1). The strongest and the third-strongest scatter-
= 0.132 mm2/ps, respectively, for the left and right ers are on the same horizontal line y - 62 mm,
rods. The values are 88% and 76%, respectively, of whereas the second-strongest and the weakest scat-
the true value of q = 0.173 mm2/ps. terers are on the horizontal line y - 33 mm with a

The independent intensity distributions at the de- spacing of 29 mm. The four scatterers are separated
tector plane corresponding to the four scattering inho- by equal spacing, -14 mm in the horizontal direc-
mogeneities in specimen 2 are displayed in Figs. 5(a)- tion. The lateral positions agree well with the known
5(d). These independent components are then used to (x, y) coordinate values. The uncertainties in location
obtain the projections of the inhomogeneity detector and separation are not greater than 3 mm except for
Green's function, G(rd, rj), j = 1, 2, 3, 4, on the detec- the weakest target.
tor plane for the four small cylindrical scattering in-
homogeneities embedded in specimen 2. The 5. Discussion
locations of the inhomogeneities are determined by The OPTICA presented in this article introduces the
fitting the projections to those of the model Green's information theory technique of ICA to the problem of
function. The locations of all four inhomogeneities optical tomographic imaging of objects in turbid me-
were obtained. Even the weakest scatterer, with a dia. It is shown to provide object locations accurate to
scattering coefficient just 1.1 times the background -1 mm in human-breast-like turbid media. It uses
and hence considered to be rather unlikely to be multiple-source (realized in this case through scan-
found,42 was detected. Positions along the z axis ning of the sample in the xy plane across the incident
(depth) of the cylinders were found to be at 28.1, 27.9, beam propagating in the z direction) illumination and
27.1, and 32.6 mm. Except for the last cylinder, the a multiple-detector (each pixel on the CCD may be

1894 APPLIED OPTICS / Vol. 44, No. 10 / 1 April 2005



0i 0 processing of the data and does not have to resort to
X any specific light propagation model for obtaining
*• this information. Specific light propagation models

2 40 are needed only in the later stage to determine the
0, location by curve fitting of the Green's functions.

S0OPTICA is not m odel specific; any appropriate
° ("M • + m ° model for light propagation, including the DA and

(a) ~ mm)(I,)X~nmr)

the cumulant solutions of the RTE, may be used.
4 4 OPTICA can be used with contrast agents such as

2o fluorescence-based optical tomography as well.
Although we used the slab geometry in the study

40!0 reported in this article, the approach does not depend

60 60 on any specific geometry. It may be used for other0 20 40 60 o 20 40 60 geometries or even an arbitrary-shaped boundary. The
W) X(,M) (d) X(m,,,) approach is fast and is expected to be amenable to

8 near-real-time detection and localization of objects in a- +]••turbid medium, which is a key consideration for in vivo

4 medical imaging. The approach is remarkably sensi-
tive, considering that it could discern all four cylinders

0 in specimen 2. The approach successfully detected
8) •°even the lowest-contrast inhomogeneity of the four

4( . . .. . that had a reduced scattering coefficient only 10%
8e) X•=o) (",,, higher than the surrounding medium and was consid-

"ered improbable to be detected.42 OPTICA obtains lo-
cations of the objects by fitting either or both of the
"Green's functions G(r, rJ) and G(rd, r), and is suited

4 for physically small inhomogeneities. Given its ca-
pability of identifying low-contrast small objects,

_. ...___ , •, +',, the approach is expected to be useful for detecting
x(,n,) X(m,,• tumors at their early stages of development, a cov-

(g) (h) eted goal in medical imaging.
Fig. 5. Independent spatial intensity distributions at the exit (or As demonstrated with specimen 1 and specimen 2,

detector) plane generated by ICA corresponding to objects with the approach could locate both absorptive and scat-
scattering coefficients: (a) 4 times, (b) 2 times, (c) 1.5 times, and (d) tering objects. When both absorptive and scattering
1.1 times that of the material of the slab in specimen 2. Horizontal objects are present in the same turbid specimen, OP-
profiles of the intensity distributions in Ca)-(d) are shown by circles TICA can locate them, but their identification as ab-
in (e)-(h), respectively, with solid curves representing the Green's- sorbing or scattering entities becomes a more
function fit used for extracting object locations, challenging task. As discussed in connection with ex-

pressions (12) and (13), each scattering inhomogene-
ity is expected to be represented by three virtual

viewed as a detector) data-acquisition scheme. The sources, yielding three pairs of effective intensity dis-
resulting spatial diversity and multiple angular ob- tributions each on the detector and source planes.
servations provide robust data for extracting 3-D lo- When the background scattering is not severe and
cation information about the embedded objects the S/N ratio is high, contributions from all three
(inhomogeneities) in the medium. A salient feature of virtual sources may be distinguished and the corre-
OPTICA is that ICA provides the independent com- sponding object may be identified as a scattering en-
ponents due to the inhomogeneities with minimal tity. Our simulation results support this assertion.

For highly scattering conditions with lower S/N ra-
tios, contributions from the two dumbbell-shaped vir-

Table 1. Comparison of Known and OPTICA-Determined Positions of tual sources may not be discerned, and corroborative
the Four Targets" information obtained by other means, such as mea-

OPTICA-Estimated surements using light of different wavelengths, are
Target Target Known Position Position required for identification of the object as an absorp-
Number Strength (x, y, z) (mm) (x, y, z) (mm) tive or scattering entity. Multiwavelength spectro-

1 4 (60, 60, 27.5) (62, 63, 28.1) scopic imaging measurements have the potential to
2 2 (47, 30, 27.5) (48, 33, 27.9) provide diagnostic information, such as whether a
3 1.5 (33, 60, 27.5) (33, 62, 27.1) tumor is malignant or benign.
4 1.1 (20, 30, 27.5) (18, 33, 32.6) In summary, OPTICA has the potential to emerge

"Target strength is the ratio of the scattering coefficients of the as a new versatile tool for locating targets in turbid
target to that of the surrounding medium. The errors in location media, particularly in diagnostic medical imaging
are not greater than 3 mm. and underwater imaging.
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Abstract

A new imaging approach for three-dimensional localization and characterization of objects

in a turbid medium using independent component analysis (ICA) from information theory is

developed and demonstrated using simulated data. This approach uses a multi-source and

multi-detector signal acquisition scheme. Independent component analysis of the perturba-

tions in the spatial intensity distribution measured on the medium boundary sorts out the

embedded objects. The locations and optical characteristics of the embedded objects are ob-

tained from a Green's function analysis based on any appropriate model for light propagation

in the background medium. This approach is shown to locate and characterize absorptive and

scattering inhomogeneities within highly scattering medium to a high degree of accuracy. In

particular, we show this approach can discriminate between absorptive and scattering inhomo-

geneities, and can locate and characterize complex inhomogeneities which is both absorptive

and scattering. The influence of noise and uncertainty in background absorption or scattering

on the performance of this approach is investigated.

Keywords: image processing, image reconstruction, medical imaging, inverse problems, absorption,

scattering, diffusion, radiative transfer
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1 Introduction

Optical probing of the interior of multiply scattering colloidal suspensions and biological materials

has attracted much attention over the last decade. In particular, biomedical optical tomography

and spectroscopy which has the potential to provide functional information about brain activities

and diagnostic information about tumors in breast and prostate are being actively pursued[l, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Simultaneous developments in experimental apparatus

and techniques for object interrogation and signal acquisition,[4, 5, 2, 18, 19] analytical models

for light propagation,[10, 20, 21, 22] and computer algorithms for image reconstruction[8, 6] hold

promise for realization of these potentials of optical tomography.

Multiple scattering of light in thick turbid media precludes direct imaging of embedded targets.

One typically uses an inverse image reconstruction (IIR) [8, 6] approach to reconstruct a map of the

optical properties, such as, absorption coefficient (at) and scattering coefficient (ps), of the medium

by matching the measured light intensity distribution on the boundary of the turbid medium to that

calculated by a forward model for the propagation of light in that medium. The commonly used

forward models include the radiative transfer equation (RTE),[23, 17] the diffusion approximation

(DA) of RTE, [8, 6] and random walk of photons. [24, 25]

The inversion problem is ill-posed and needs to be regularized to stabilize the inversion at a

cost of reduced resolution. [26, 8] Both iterative reconstruction and noniterative linearized inversion

approaches have been used to solve the inversion problem in optical tomography, which is weakly

nonlinear, with limited success. Reconstruction of images with adequate spatial resolution and

accurate localization and characterization of the inhomogeneities remain a formidable task. Time

required for data acquisition and image reconstruction is another important consideration.

In this article, we present a novel algorithm based on the independent component analysis

(ICA)[27, 28] from information theory to locate absorptive and scattering inhomogeneities embed-

ded in a thick turbid medium and demonstrate the efficacy using simulated data. ICA has been

successfully applied in various other application such as electroencephalogram and nuclear mag-

netic resonance spectroscopy[29, 30, 28, 31] We refer to this information theory-inspired approach

as optical imaging using independent component analysis, abbreviated as, OPTICA. The novelty
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of OPTICA over other ICA applications is that OPTICA associates directly the independent com-

ponents to the Green's functions responsible for light propagation in the turbid medium from the

inhomogeneities to the source and the detector, and therefore the retrieved independent components

can be used to locate and characterize the inhomogeneities.

OPTICA uses a multi-source illumination and multi-detector signal acquisition scheme providing

a variety of spatial and angular views essential for three-dimensional (3D) object localization. Each

object (or, inhomogeneity) within the turbid medium alters the propagation of light through the

medium. The influence of an object on the spatial distribution of the light intensity at the detector

plane involves propagation of light from the source to the object, and from the object to the detector,

and can be described in terms of two Green's functions (propagators) describing light propagation

from source to the object and that from the object to the detector, respectively.

The absorptive or scattering inhomogeneities illuminated by the incident wave are assumed to

be virtual sources, and the perturbation of the spatial distribution of the light intensity on the

medium boundary is taken to be some weighted mixture of signals arriving from these virtual

sources. These virtual sources are statistically independent and can be recovered by independent

component analysis of the recorded data set. The number of leading independent components is

same as the number of embedded objects. The location and characterization of inhomogeneities

are obtained from the analysis of the retrieved virtual sources using an appropriate model of light

propagation in the background medium.

The remainder of this article is organized as follows. In Section 2, we present a brief introduction

to independent component analysis and review the general theoretical framework for OPTICA.

Section 3 presents the results from simulations for different configurations. Implications of these

results are discussed in Section 4.
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2 Theoretical Formalism

2.1 Independent component analysis

Blind source separation is a class of problem of general interest which consists of recovering un-

observed signals or virtual sources from several observed mixtures. Typically the observations are

the output of a set of sensors, where each sensor receives a different combination of the source

signals. Prior knowledge about the mixture in such problems is usually not available. The lack of

prior knowledge is compensated by a statistically strong but often physically plausible assumption

of independence between the source signals. Over the last decade, independent component analysis

(ICA) has been proposed as a solution to the blind source separation problem and emerged as a

new paradigm in signal processing and data analysis.[27, 28, 32, 31]

The simplest ICA model, an instantaneous linear mixture model[32], assumes the existence

of n independent signals si(t) (i = 1, 2, ... , n) and the observation of at least as many mixtures

xi(t) (i = 1, 2,. .. , m) by m > n sensors, these mixtures being linear and instantaneous, Lie, xi(t) =

En

Zj=1 aijsj(t) for each i at a sequence of time t. In a matrix notation,

x(t) = As(t), A E R' n (1)

where A is the mixing matrix. The jth column of A gives the mixing vector for the jth virtual source.

Independent component analysis can be formulated as the computation of an n x m separating

matrix B whose output

y(t) = Bx(t) = Cs(t), B E R'n m , C -BA E ]R">x (2)

is an estimate of the vector s(t) of the source signals.

The basic principle of ICA can be understood in the following way. The central limit theorem

in probability theory tells that the distribution of independent random variables tends toward

a Gaussian distribution under certain conditions. Thus a sum of multiple independent random

variables usually has a distribution that is closer to Gaussian than any of the original random
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variables. yi(t) = Z3 Cijsj(t) in Eq. 2, as a summation of independent random variables sj(t), is

usually more Gaussian than sj(t) while yi(t) becomes least Gaussian when it in fact equals one of

the sj(t). This heuristic argument shows that independent component analysis can be intuitively

regarded as a statistical approach to find the separating matrix B such that yi(t) is least Gaussian.

This can be achieved by maximizing some measure of nongaussianity such as, maximizing kurtosis

(the fourth order cumulant), of yi(t).[33, 32]

Independent component analysis separates independent sources from linear instantaneous or

convolutive mixtures of independent signals without relying on any specific knowledge of the sources

except that they are independent. The sources are recovered by a maximization of a measure of

independence (or, a minimization of a measure of dependence), such as nongaussianity and mutual

information between the reconstructed sources.[32, 31] The recovered virtual sources and mixing

vectors from ICA are unique up to permutation and scaling.[32, 31]

2.2 Optical imaging using independent component analysis

The classical approach to propagation of multiply scattered light in turbid media, which assumes

that phases are uncorrelated on scales larger than the scattering mean free path Is, leads to the

radiative transport equation (RTE) in which any interference effects are neglected.[34] RTE does

not admit closed-form analytical solutions in bounded regions and its numerical solution is com-

putational expensive. The commonly used forward models in optical imaging of highly scattering

media is the diffusion approximation (DA) to RTE. [8, 6]

The approach OPTICA can be applied to different models of light propagation in turbid media,

such as, the diffusion approximation,[8, 6] the cumulant approximation[20, 35, 22], the random walk

model,[24, 10] and radiative transfer[34, 17] when they are linearized. The diffusion approximation

is valid when the inhomogeneities are deep within a highly scattering medium. We only discuss the

formalism of OPTICA in the diffusion approximation in this article.

In the diffusion approximation, the perturbation of the detected light intensities on the bound-

aries of the medium, the scattered wave field, due to absorptive and scattering objects (inhomo-
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geneities) can be written as:[3, 13]

sca(rd, r) ý- J G (rd, r) 6p,(r) cG (r, r,) dr - J 6D(r)cVrG(rd, r) . VrG(r, r,)dr (3)

to the first order of Born approximation[36] when illuminated by a point source of unit power,

where r,, r and rd are the positions of the source, the inhomogeneity and the detector respectively,

6•a [ Pa,obj - [Pa and 6D = Dobj - D are the differences in absorption coefficient and diffusion

coefficient, respectively, between the inhomogeneity and the background, c is the speed of light in

the medium, and G(r, r') is the Green's function describing light propagation from r' to r inside

the background turbid medium of absorption and diffusion coefficients [a and D.

Eq. (3) is written in the frequency domain and does not explicitly show the modulation fre-

quency w of the incident wave for clarity. The following formalism applies to continuous wave,

frequency-domain and time-resolved measurements. The time domain measurement is first Fourier

transformed over time to obtain data over many different frequencies.

The Green's function G for a slab geometry in DA is given by

01 • exp(-Kr+) _exp(--zrý)]

Tkk

rk ý p 2 ±(z ýTz/'±2kd)ý

for an incident amplitude-modulated wave of modulation frequency w, where k = 0, ±1, ±2,...,

p = V/(x - x,)2 + (y - y,)2 is the distance between the two points r =(x, y, z) and r' = (x', y', z')

projected onto the xy plane, K = (pa - iw/c)/D chosen to have a nonnegative real part, and the

extrapolated boundaries of the slab are located at z = 0 and z = d = L. + 2 z,, respectively, where

Lz is the physical thickness of the slab and the extrapolation length z, should be determined from

the boundary condition of the slab. [37, 38, 39] Greens' functions in Eq. (3) for other geometries can

be obtained either analytically or numerically. [40, 41]
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2.2.1 Absorptive inhomogeneities

We first consider absorptive inhomogeneities. Under the assumption that absorptive inhomo-

geneities are localized, that is, the jth one is contained in volume Vj centered at rj (1 < j < J),

the scattered wave field in Eq. (3) can be rewritten as

J
-- ksc(rd, rs) E G(rd, rj)qjG(rj,r,) (5)

j=1

where qj = Jlua(rj)cVj is the absorption strength of the jth inhomogeneity. The scattered wave is

in a form of in an instantaneous linear mixture (1). One absorptive inhomogeneity is represented

by one virtual source qjG(rj, r,) with a mixing vector G(rd, rj).

As the virtual source q3G(r 3, r,) at the jth inhomogeneity is independent of the virtual sources

at other locations, independent component analysis can be used with the observations obtained

for the light source at n >> J different positions to separate out both virtual sources sj(r,) and

the mixing vectors aj(rd). [27, 32] The jth virtual source sj(r,) and the jth mixing vector aj(rd)

provide the scaled projections of the Green's function on the source and detector planes, G(r 3, r,)

and G(rd, rj), respectively. We can write

sj(r8 ) = aG(rj,r•), (6)

aj(rd) = / 3jG(rd,r2 )

where aj and /3j are scaling constants for the jth inhomogeneity.

Both the location and strength of the jth object can be computed by a simple fitting procedure

using Eq. (6). We adopted a least square fitting procedure given by:

min [a, [O-lsj(r) - G(rj, rs)] 2 + [/:laj(rd)--G(rd, rj )]}. (7)
rj ,• ,j rd

The fitting yields the location rj of and the two scaling constants aj and Oj for the jth inhomogeneity

whose absorption strength is then given by qj = ajo3j.
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2.2.2 Scattering inhomogeneities

For scattering inhomogeneities, a similar analysis shows the scattered wave can be written as:

it

-- Osca(rd, rs) = Egz(rj,rd)qjgZ(rj,rs) (8)
j=1

Ji

± >1 Pdj COS OdgL (rj, rd)qjpsj cos Osgi (rj, r,)
j=1

it

+ >1 Pdj sin Odgl(rj, rd)qjp8 j sin Osgi(rj, r,)
j=1

where qj. 6D(rj)cVj' is the diffusion strength of the jth scattering inhomogeneity of volume Vjt

(j = 1,2,. J'), Pdj = V/(Xd-- Xj) 2 ± (Yd - Yj) 2 , Psj = V(Xs- Xj) 2 + (Ys - Yj)2, Od and O are the

azimuthal angles of rd - rj and r, - rj respectively, and the two auxiliary functions are given by

) I•r +D 1exp(-Kr +) (r-+1exp(-) (9)

g±(r,rt) - 47rD (Kr + k - (Kr- ]

and

1~ +0 { exp(-•r+)

(r'r') -4D(z - z + 2kd)(r+ +1(0) 3

-(z + z' - 2kd)(Kr ++ 1) eX}.

The scattered wave from one scattering inhomogeneity is thus a mixture of contributions from

(3J') virtual sources:

qjg,(rj,r,), qjpjcosO~g±(rj,r8 ), qj>p~jsinOsgi(rj, r.), (11)

with mixing vectors

gz(rj, rd), Pdj COSOdgI(rj, rd), pdjsinOdg±(rj,rd) (12)
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where 1 < j < J, respectively. Both the location and strength of the jth scattering object are

computed by fitting the retrieved virtual sources and mixing vectors to Eq. (11) and Eq. (12) using

a least square procedure, respectively.

There are in general three virtual sources of specific patterns (one centrosymmetric and two

dumbbell-shaped) associated with one scattering inhomogeneity, whereas only one centrosymmetric

virtual source is associated with one absorptive inhomogeneity. This difference may serve as the

basis to discriminate absorptive and scattering inhomogeneities.

The only assumption made in OPTICA is that virtual sources are mutually independent. The

number of inhomogeneities within the medium is determined by the number of the independent

components presented in the multi-source multi-detector data set. No specific light propagation

model is assumed in this step. The analysis of retrieved independent components from ICA then

localizes and characterizes the absorptive and scattering inhomogeneities inside the turbid medium

using an appropriate model of the light propagator. Extra independent components may appear

depending on the level of noise in the data. These components can be discarded and only the

leading independent components need to be analyzed to detect and characterize inhomogeneities of

interest.

3 Results

Simulations were performed for a slab of thickness 50mm shown schematically in Fig. 1. The

absorption and diffusion coefficients of the uniform slab is La = 1/300rm-land D = 1/3mm

respectively, close to that of human breast tissue.[42] The incident CW beam scans a set of 21 x 21

grid points covering an area of 90 x 90mm 2. The spacing between two consecutive grid points is

4.5mm. The light intensity on the other side of the slab is recorded by a CCD camera on 42 x 42

grid points covering the same area.

[Figure 1 about here.]

In the simulations presented in the following subsections, we fix the ratio of strength of absorption

to that of diffusion to be 0.01, which produce perturbations of comparable magnitude on the light
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intensities measured on the detector plane from the absorption and scattering inhomogeneities. As

the scattered wave is linear with respect to the absorption and diffusion strengths, we also set the

strength of either absorption or diffusion to be unity in simulations for convenience.

3.1 Absorptive Inhomogeneities

Two absorptive inhomogeneities, each of a unity absorption strength, are placed at positions

(50,60,20)mm and (30,30, 30)mm, respectively. Gaussian noise of 5% was added to the simu-

lated light intensity change on the detector plane. OPTICA operates on a noisy scattering wave

-- sca(rd, rs) [1 + n(rd, r,)] where n(rd, r,) is a Gaussian random variable of an standard deviation

0.05.

Independent component analysis of the perturbations in the spatial intensity distributions pro-

vided corresponding independent intensity distributions on the source and detector planes. ICA

generated independent intensity distributions on the source and detector planes are shown in Fig.

2, for the two absorptive inhomogeneities. Locations of the absorptive objects are obtained from fit-

ting these independent component intensity distributions to those of the diffusion approximation in

a slab Eq. (4) by the least square procedure Eq. (7). The first object is found at (50.0, 60.0, 20.0)mm

and the second one at (30.0, 30.0, 30.1)mm. The coordinates of both objects agree to within 0.1mm

of their known locations. The strengths of the two objects are q, = 1.00 and q2 = 0.99 respectively,

with an error not greater than 1% of the true values.

[Figure 2 about here.]

3.2 Discrimination between absorptive and scattering inhomogeneities

In the second example, one absorptive object of absorption strength of 0.01 is placed at (50, 60, 20)mm

and one scattering object of diffusion strength of negative unity (corresponding to an increase in

scattering for the inhomogeneity) is placed at (30, 30, 30)mm respectively. 5% Gaussian noise was

added to the simulated light intensity change on the detector plane.

Fig. 3 shows the ICA generated independent intensity distributions on the source and detector

planes and the least square fitting. The first column corresponds to the absorptive inhomogeneity.
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The second through fourth columns correspond to the scattering object which produces one pair

of centrosymmetric and two pairs of dumbbell-shaped virtual sources and mixing vectors. The

absorptive inhomogeneity is found to be at (50.2, 60.3, 20.2)mm with a strength qi = 0.0101. The

scattering object produces three pairs (one centrosymmetric and two dumbbell-shaped) of virtual

sources and mixing vectors centering around the position (x, y) = (30, 30)mm [see the second

through fourth columns in Fig. 3]. The dumbbell-shaped virtual source or mixing vector comprises

one bright part and its antisymmetric dark counterpart. The resolved position and strength of the

scattering object are found to be (30.0, 30.0, 30.0)mm and q2 = -0.99, (32.1, 32.4, 30.2)mm and

q2 = -0.96, and (31.3,30.2, 27.1)mm and q2 = -1.05, respectively, through fitting to the individual

pair. For the scattering object, the best result is obtained from the fitting to the first pair of

centrosymmetric virtual source and mixing vector from the scattering object. Taking the position

and strength of the scattering object to be that from fitting the centrosymmetric virtual source and

mixing vector, the error of the resolved positions of both objects is within 0.3mm of their known

locations. The error of the resolved strengths of both objects is approximately 1% of the true values.

[Figure 3 about here.]

3.3 Co-located absorptive and scattering inhomogeneities

For one complex inhomogeneity which is both absorptive and scattering, the two pairs of dumbbell-

shaped virtual sources and mixing vectors produced by its scattering abnormality can be used to

obtain its scattering strength. By subtracting the scattering contribution off the measured scattered

wave, our procedure can be applied again to the cleaned data and proceed to obtain its absorption

strength. The third example considers a complex inhomogeneity at (30, 30, 20)mm with strengths

of absorption q, = 0.01 and diffusion q2 = 1 (corresponding to a decrease in scattering) respectively.

5% Gaussian noise was added to the simulated light intensity change on the detector plane.

Fig. 4 shows the ICA generated independent intensity distributions on the source and detec-

tor planes and the least square fitting. The first and second columns correspond to the pairs of

dumbbell-shaped virtual sources and mixing vectors produced by its scattering component. The po-

sition and strength of this diffusive component is obtained to be (32.7, 33.0, 20.5)mm and q2 = 0.95,
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and (31.7, 30.1, 20.4)mm and q2 = 0.96 by fitting the two individual dumbbell-shaped pair respec-

tively. The position and strength of the diffusive component is found to be (30.9, 30.9, 20.4)mm

and q2 = 0.95 if both dumbbell-shaped virtual sources and mixing vectors are used in fitting. The

third column of Fig. 4 corresponds to its absorptive component obtained by first removing the scat-

tering contribution from the measured scattered wave. The depth and strength of the absorption

component is found to be (30.8, 30.7, 32.7)mm and q, = 0.0091.

The error in positioning the scattering component is less than 1mm and the error of the resolved

strength of the scattering strength is - 5%. The errors in positioning and the resolved strength of

the absorptive component equal to - 3mm and - 10%, respectively, which are larger than those of

the scattering component because the error is amplified when the estimated scattering component

is used in subtraction off its contribution to the scattered wave in our procedure.

[Figure 4 about here.]

3.4 Effect of noise

To demonstrate the effect of noise on the performance of OPTICA, different levels of Gaussian noise

were added to the simulated light intensity change on the detector plane.

Fig. 5 shows the case presented in Fig. 3 of Sec. 3.2 with instead 10% and 20% Gaussian noise

added to the scattered wave. The resolved absorptive inhomogeneity is at (50.2, 60.3, 20.1)mm with

strength 0.0101 at 10% noise, and at (50.1,60.3,20.5)mm with strength 0.0102 at 20% noise. The

resolved position and strength of the scattering object are found to be (30.0, 30.1, 30.0)mm and q2 =

-0.98, (32.1,32.4,30.4)mm and q2 = -0.95, and (31.4,30.1,27.5)mm and q2 = -1.00 respectively

through fitting to the pair of centrosymmetric and two pairs of dumbbell-shaped virtual sources

and mixing vectors [see the second to fourth columns of Fig. 5(a)], respectively, at 10% noise. The

resolved values become (28.9, 27.0, 32.9)mm and q2 = -0.59 from fitting the pair of centrosymmetric

virtual source and mixing vector [see the second column of Fig. 5(b)], and (30.3,32.3, 26.6)mm and

q2 = -1.33 from fitting the first pair of dumbbell-shaped virtual source and mixing vector [see the

third column of Fig. 5(b)], respectively, at 20% noise. The dumbbell-shaped virtual source on the

source plane, of the second pair of dumbbell-shaped virtual source and mixing vector, is deformed
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and the fitting is not shown [see the fourth column of Fig. 5(b)]. The deformation of dumb bell

appears first on the source plane with the increase of noise as the grid spacing on the source plane

is larger than that on the detector plane in the simulation.

The error in localization and characterization of scattering inhomogeneities increases rapidly

with the increase of noise, from - 0.1mm in positioning and - 2% in strength at 10% noise to

3mm in positioning and - 50% in strength at 20% noise. On the other hand, the effect of noise

on localization and characterization of absorptive inhomogeneities is much smaller, the errors at

both noise levels are less than 0.5mm in positioning and - 2% in strength. The results in See. 3.2

and this section are summarized in Tab. 1.

[Figure 5 about here.]

[Table 1 about here.]

3.5 Effect of uncertainty in background

In the examples discussed above, we have assumed the light intensities change measured on the

detector plane is obtained with an exact knowledge about the background. To examine the effect of

uncertainty in background optical property on the performance of OPTICA, we model the error in

the estimation of the background absorption or diffusion coefficients as a uniform Gaussian random

field f(r). The Gaussian noise addressed in Sec. 3.4 is set to be zero here. OPTICA operates on a

"dirty" scattering wave -k0,a(rd, r,) + 6
5 sca (rd, r.) where 3 ¢sca(rd, r,) is the change in the scattered

wave from that of a uniform background of absorption pa (or diffusion D) to that of a background

of absorption pa + f(r) (or diffusion D + f(r)). The magnitude of the background uncertainty is

represented by the signal to noise ratio (SNR) defined by

SNR(dB) = 101 og10  Zr, I0sca (rdrs)I (13)
E rd E rs I

8
6sca(rd, r,)1

2 "

Figs. 6(a-c) show the case presented in Fig. 3 of Sec. 3.2 with 40dB, 34dB and 10dB SNR due

to background absorption uncertainty, respectively. The resolved absorptive inhomogeneity is at
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(50.2, 60.3, 20.1)mm with strength 0.0101 at 40dB SNR, and at (50.2, 60.3, 20.1)mm with strength

0.0100 at 34dB SNR, and at (50.6, 60.3, 20.3)mm with strength 0.0090 at 10dB SNR.

The resolved position and strength of the scattering object are found to be (30.1, 30.1, 30.0)mm

and q2 = -0.99, (32.1,32.9,30.0)mm and q2 = -0.95, and (31.4, 30.0, 27.5)mm and q2 = -1.01

respectively through fitting to the pair of centrosymmetric and two pairs of dumbbell-shaped virtual

sources and mixing vectors [see the second to fourth columns of Fig. 5(a)], respectively, at 40dB

SNR. The resolved values become (31.6, 31.7, 25.3)mm and q2 = -0.52 and (31.7, 29.6, 31.7) and

q2 = -0.78 at 34dB and 10dB SNRs, respectively, from fitting the pair of centrosymmetric virtual

source and mixing vector [see the second columns of Figs. 5(b),(c)]. The dumbbell-shaped virtual

sources and mixing vectors, esp dumbbell-shaped virtual sources on the source plane, are deformed

and the fitting are not shown [see the third and fourth columns of Fig. 5(b),(c)]. The results for

the influence of background absorption uncertainty on the performance are summarized in Tab. 2.

[Figure 6 about here.]

[Table 2 about here.]

Figs. 7(a,b) show the case presented in Fig. 3 of Sec. 3.2 with 34dB and 10dB SNR due to

background scattering uncertainty. The resolved absorptive inhomogeneity is at (50.1, 60.3, 20.1)mm

with strength 0.0100 at 34dB SNR and at (49.9, 60.5, 20.1)mm with strength 0.0099 at 10dB SNR.

The resolved position and strength of the scattering object are found to be (30.0, 30.1, 30.0)mm

and q2 = -0.99, (32.2, 33.0, 30.0)mm and q2 = -0.96, and (32.3, 29.3, 27.1)mm and q2 = -1.08

respectively through fitting to the pair of centrosymmetric and two pairs of dumbbell-shaped virtual

sources and mixing vectors [see the second to fourth columns of Fig. 5(a)], respectively, at 34dB

SNR. The resolved position and strength of the scattering object are found to be (31.7,31.1, 32.5)mm

and q2 = -0.75, (30.9, 31.4, 27.5)mm and q2 = -1.08, respectively through fitting to the pair of

centrosymmetric and the first pair of dumbbell-shaped virtual sources and mixing vectors [see the

second to fourth columns of Fig. 5(b)] at 10dB SNR. The results for the influence of background

scattering uncertainty on the performance are summarized in Tab. 3.

[Figure 7 about here.]
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[Table 3 about here.]

The uncertainty in the background absorption or diffusion coefficients affects the performance

of OPTICA in a similar fashion as the noise does discussed in Sec. 3.4. The error in localization

and characterization of scattering inhomogeneities increases rapidly while the error in localization

and characterization of absorptive inhomogeneities only increases mildly with the increase of the

uncertainty in the background optical property. The uncertainty in background scattering has a

less adverse effect on the performance of OPTICA than that in background absorption.

4 Discussion

The simulational study of OPTICA presented in this article demonstrates its potential in optical

imaging of objects in turbid media. It is shown to be able to locate and characterize absorptive

and scattering inhomogeneities within highly scattering medium. In particular, OPTICA can dis-

criminate between absorptive and scattering inhomogeneities and locate and characterize complex

inhomogeneities which is both absorptive and scattering. The accuracy of localization and char-

acterization of inhomogeneities is high. In the cases investigated for concentrated inhomogeneities

within a tissue emulating slab of thickness of 50mm, the errors in resolved object locations are not

greater than 1mm and the errors in the resolved optical strengths are - 2% under favorable noise

levels and reliable background estimations.

Noise at higher levels and/or larger uncertainty in the optical property of the background

medium makes it difficult to discriminate between absorptive and scattering inhomogeneities. In

such a situation, other corroborative evidences, such as, multi-wavelength measurements are re-

quired to determine the nature of inhomogeneities. Noise at higher levels and/or larger uncertainty

in the optical property of the background medium also introduces larger errors in localization and

characterization of scattering inhomogeneities. The accuracy of localization and characterization

of absorptive inhomogeneities is only affected mildly by the amount of noise and/or uncertainty in

the range investigated.

OPTICA has several salient features. First, OPTICA provides the independent components

due to the inhomogeneities with minimal processing of the data and does not have to resort to any
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specific light propagation model for obtaining this information. Specific light propagation models

are needed only in the later stage to determine location and optical strength. Second, different

geometries, or even an arbitrary shaped boundary, can be used with OPTICA. Although we used

the slab geometry in the work reported in this article, the approach does not depend on any specific

geometry. Third, the approach is fast and is amenable to near real time detection and localization

of objects in a turbid medium, which is a key consideration for in vivo medical imaging.

As it is well known, the diffusion approximation to RTE which is widely used in inverse image

reconstruction, does not apply when the separation between any two of the source, the inhomogene-

ity and the detector is small, or when there are clear regions in the medium. A special treatment is

also required when the medium has aligned microstructures, such as, myofibrils, axons, or collagen

fibers in tissues. [43] The fact that a prior assumption of a specific model of light propagation in the

medium is not assumed in the identification of independent components by ICA and only required

in a Green's function analysis of the retrieved independent component is desirable, esp. in such

situations which demands a more complex model than the conventional DA. Performing the fitting

procedure for each identified independent component is much simpler and transparent than match-

ing the measured light intensity to a forward model iteratively. The quality of reconstruction of

OPTICA is expected to be higher than the conventional approach when only an imperfect forward

model is available.

OPTICA is most suited to detect small objects. Given its ability to identify low-contrast small

objects, the approach is expected to be especially useful for detection of tumors at their early stages

of development.
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Multiple passages of light through an absorption inhomogeneity
in optical imaging of turbid media
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Multiple passages of light through an absorption i•omogeneity of finite size deep within a turbid medium
are analyzed for optical imaging by use of the self-energy diagram. The nonlinear correction becomes more
important for an inhomogeneity of a larger size and with greater contrast in absorption with respect to the host
background. The nonlinear correction factor agrees well with that from Monte Carlo simulations for cw light.
The correction is approximately 50%-75% in the near infrared for an absorption inhomogeneity with the
typical optical properties found in tissues and five times the size of the transport mean free path. © 2004
Optical Society of America

OCIS codes: 290.4210, 290.7050, 170.3660.

The main objective of optical imaging of turbid media hi = --G(rd, w I r-)V•t/z•(r-) •. [-N•olf(w; R)Y•a(r-)]n

is to locate and identify the embedded inhomogeneities ,=0
by essentially inverting the difference in photon

X G(F, w I rs)
transmittance in the time or frequency domains due
to the presence of these inhomogeneities.1-4 The key Vti/z•(F)
quantity involved is the Jacobian, which quantifies =-G(rd, w l y)1 + N---•elf(w;R)V•tza(•)

the influence on the detected signal due to the change
of the optical parameters of the medium. The linear x G(F, w lr•), (1)
perturbation approach is suitable for calculating the
Jacobian for only a small and weak absorption in- where •fta is the excess absorption of the absorption
homogeneity and is not valid when the absorption site of size R and volume V, w is the modulation fre-
strength is large.5 This failure can be attributed to quency of light, G is the propagator of photon migra-
the multiple passages through the abnormal site by tion in the background medium, and

the photon. The most important correction is the lfvfv
self-energy correction,6 which takes into account the N--self(W; R) = •-• G(r2, w Irl)d3r2d3rl (2)

repeated visits made by a photon through the site up
to an infinite number of times. The presence of other is the self-propagator that describes the probability
inhomogeneity islands can be ignored because the that a photon revisits volume V. Here G(r2, w lrl)
photon propagator decreases rapidly with the distance gives the probability density that a photon leaves the
between two separate sites, volume at rl and reenters it at r2. The scattering

In this Letter the nonlinear correction for an absorp- property of the site is the same as that of the back-
tion inhomogeneity of a large strength due to repeated ground. In Eq. (1) G (rd, w ] r-) and G (F, w I r•) are well
visits by the photon is modeled by a nonlinear correc- modeled by the center-moved diffusion model as long
tion factor (NCF) to the linear perturbation approach, as separations [rd -- r[ and ]r.• - •[ are much greater
The NCF as a function of the size and the strength than lt.7 However, the diffusion Green's function can-
of the inhomogeneity is estimated by use of the self- not be used in Eq. (2) to evaluate N---•elr(w;R) because
energy diagram. The NCF is obtained from the cu- the diffusion approximation breaks down when rl is in
mulant approximation to the radiative transfer and the proximity of r2.
verified by Monte Carlo simulations for cw light. The Comparing Eq. (1) with the standard linear pertur-
magnitude of the NCF is 0.5-1 for an absorptive in- bation approach, the nonlinear multiple passage effect
homogeneity of up to 5lt (lt is the mean transport free of an absorption site is represented by a NCF:
path of light) and of the typical optical properties of
human tissues (tzalt/c • 0.01--0.05, where p, is the NCF = [1 +-Nself(w;R)V•l.ta(Y)]-1. (3)
absorption coefficient and c is the speed of light in the
medium). This factor serves as a universal measure of the non-

If we consider an absorption site centered at Y and linear multiple-passage effect as long as the absorption
far away from both the source and the detector, change site is far from both the source and the detector and its
in detected light AI at detector rd from a modulated size is much smaller than its distance to both the source
point source at r• including the multiple passages and the detector: This correction is more significant
through the site is given by when the NCF is further away from unity.

0146-9592/04/151757-03515.00/0 © 2004 Optical Society of America
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Photon propagator N(r 2, t I rl, s), the probability Eq. (5), includes the contribution from the ballistic mo-
that a photon propagates from position r1 with propa- tion of the photon when the photon passes through the
gation direction s to position r 2 in time t, for any sepa- site. This ballistic contribution manifests itself as the
ration between r, and r 2, was recently derived7'8 in linear decay of Noelf (t; R)V in the form of yo(ct) near
the form of a cumulant approximation to the radiative the origin of the time, followed by a transition to dif-
transfer, fusion [Fig. 1(b)].

In the case of interest in which the absorption site The NCF is obtained by plugging Eq. (5) or (6) into
is deep inside the medium, the photon distribution Eq. (3). In particular, we have
is isotropic. The photon propagator is simplified 9-1
to Neff(r, t) - Neff (ir2 - rl], t), which is obtained by 1 + • q(• + 1 -< 1/2
averaging N(r 2, t I rl, s) over the propagation direction L 61T 3
s of light over the 4,7r solid angle. In the frequency -9 / 5 (-3
domain this effective propagator is approximately NCF = 1+ 1--0q f + (7)

given by 107F 12 ) /5- e---1 - 6> /41 r 2c exp K2ltr)

where q V=- ,,a(r)/12c is the dimensionless strength
exp(--Klt) sinh(Kr), r < It , (4) of the absorber when IKIR << 1. For an absorber ofNoff(r, to) - + 4'JDrKIt fixed q > 0, the effectiveness of absorbing light is di-

exp(-Kr) sinh(K/t) r > It minished (the NCF decreases) when its size is reduced.

47TDrKlt h-- This can be understood from the fact that the photon
spends less time per volume inside the absorber of a

where D =ltc/3 and K = [3(tta - iW)/ltc]1/2 , whose smaller dimension because of the ballistic motion of the
sign is chosen with a nonnegative real part. The two photon after each scattering event. The photon leaves
terms in Neff when r < It represent ballistic and dif- a small site (R < It) in an almost straight line. The
fusion contributions, respectively. The ballistic term diffusion behavior for an individual photon is observed
does not depend on scattering because the photon dis- only after a large number of scattering and on a scale
tribution involved is already isotropic. Only diffusion larger than It.
contributes to Neff when r > It. The self-propagator Figure 2 shows plots of the NCF versus absorber
for an absorption sphere deep inside the medium is size for typical absorbers of excess absorption 8utlt/c
given by equal to 0.01 and 0.05. The nonlinear correction fac-

1 f 3 N (r tor generally decreases with the size of the absorber
Nself(W;R) - j- f Neff(jr2 - r 1[, o)d 3r 2d3 rl whose excess absorption is fixed. With the increaseV 2  

Vof the background absorption and the modulation fre-

1 r2R quency, the nonlinear correction becomes less accentu-
V Neff (r, to)yo(r)4-rr2dr, (5) ated. The phase delay is larger for higher modulation

V ffrequencies and less background absorption.

where yo(r) 1 - (3r/4R) + (1/16) (r/R)3 is the Monte Carlo simulations1" are performed for cw light
characteristic function for a uniform sphere.9 An ab- propagating in a uniform nonabsorbing and isotropic
sorption site of an arbitrary shape can be treated the scattering slab. The thickness of the slab is L = 801t.
same way. The exact self-propagator must be com- A spherical absorber of radius R is located at the center
puted by a numerical quadrature. A good approxi- (0, 0, L/2) of the slab. The excess absorption of the ab-
mation of Nself(w;R) is sorber is tSgalt/c = 0.01. The absorber has the same

Nslf(w;1R) I scattering property as the background. The details of
V= c the Monte Carlo computation were provided in a pre-

vious publication.1' The correlated sampling method

3= C6a -e.6 l 0 1210 _ x R=1/54 Approx--. 0.9 R=1/2

1 32 e216 3 e-3 (6) 10o. R2 ....
+4 + 0.7,(5 ( 10 0,6

-- 3
Klt + .(K2), 6 > 1/2 •.4 '"0.534 \ , "

by use of relation (4), where =- R/lt when IKIR << 1. 0.1 0.2 \
The exact and approximate versions of dimensionless 0.1 ..

self-propagator N 0 IfVI 1c when K =0 are plotted as 0 1 2 3 4 5 6 7 8 9 10 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0

solid and dashed curves, respectively, in Fig. 1(a). Di-
mensionless self-propagator -N00 fVlti1 c depends solely (a) (b)
on two dimensionless quantities Klt of the background Fig. 1. (a) Self-propagator -N0 ¢f(wo;R)Vl 1c and its ap-
and R/I, of the absorbing sphere. proximation form when K = 0. (b) Self-propagator for

It is worthwhile to point out that the self-propagator spheres of various radii in the time domain inside a
in time Ns 0 ]f(t;R), the inverse Fourier transform of nonabsorbing medium.
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0 - be regarded as small compared with the dimensions of

0.92 ........... the slab.
0, 4 Figure 3(b) shows the percentage change of the cw

., transmittance estimated from the experimental data
-0.7 "given in Fig. 9 of Ref. 5. The relevant parameters

0.6 2-•0 0 5-Io e=oo-0>1 of the experiment are summarized in the inset. The
12 .theoretical predictions from the linear perturbation ap-

-1240 i0.1-
00.01- 001... proach with and without the nonlinear correction are.O-K l '. ... -14 0.OI-i.OI. ... pr a

0.1 0....01 'r 0.1-01 ........ also shown in Fig. 3(b), assuming a collimated point
0.4 . . . . . -16 . . . . .

123456799 10 0 1 2 3 4 5 6 7 8 9 10 source and a point detector in a confocal setup. Our
1 R4 94theoretical prediction with nonlinear correction pro-

* ; . 0 .......... vides a significant improvement over linear pertur-
. 0.01 . . ........... . .." ,9 o.• - .-. bation and agrees much better with the experimental0.8 • • -10.0 .. -5 x•

"0.7 " .0-,O. -.. .. ., result.
.- , . " The typical value of the absorption coefficient ofo0.6 s• ... human tissues in the near infrared indicates that

-05 6pj/c=-005 x .

0.4 "l. . 0o •toc- ",Ia lf/c - 0.01-0.05.13,14 This fact should put our
0.3 0 .1 -.- results on NCFs in this range (Figs. 2 and 3) into

-/0.01-- The.orretio
0.2- o - ... 0 perspective. The nonlinear correction becomes more
0.1 1 -30 ......... important for an inhomogeneity of a larger size and

01 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 6 10 with greater contrast in absorption with respect to
M, X-4, the background. The value of the NCF decreases

Fig. 2. NCF (magnitude and phase angle) versus the size from -0.75 to -0.5 for an absorption site of radius 5lt
of absorbers whose excess absorption 58ualt/c equals 0.01 with excess absorption t5alt/c increasing from 0.01 to
and 0.05. Note that K2I112 3(/_t - ito)lt/1c for the back- wt xesasrto tl cicesn rm001t
ground medium. t 0.05. The standard linear perturbation approach in

"ground medium. optical imaging should be augmented to include this

1.1..... .. .1.4 nonlinear correction.
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Light-extinction measurements in the wavelength range of 400 to 1000 nm are performed in situ on Bacil-
lus subtilis endospores during heat-shock-induced activation. Simultaneous information on particle size and
refractive indices during activation is calculated from the transmission spectra by use of the Gaussian ray
approximation of anomalous diffraction theory. During activation the refractive index of the core decreases
from 1.51 to 1.39, and the size increases from 0.38 to 0.6 ym. © 2005 Optical Society of America

OCIS codes: 000.1430, 290.5820.

Light scattering has long been investigated as a tool [4n2M.2
for identifying bacteria size and shape,1-4 and quasi- C = Trr2 (m -1) 2 (A2- 0 2 )
elastic light scattering has been used to study en- L -

dospore (ES) structure. 5'6 The Gaussian ray approxi- 4n4 V4

mation (GRA) of anomalous diffraction theory has _(M - 1)4(/4 + 3o-4 + 6/202) 1)
been used to determine the size and shape of differ- (4

ent species of bacteria from light transmission.
3,7

Bacterial cell size typically varies from the submi- keeping only the leading two terms in the GRA [Eq.
crometer level to several micrometers; thus their (10) in Ref. 91. Here X is the wavelength, n is the re-
scattering properties in the visible are strongly de- fractive index of the background media, m is the rela-
pendent on wavelength, size, shape, and refractive tive refractive index of the particle, / = (1) is the mean
index. The bacteria genera Bacillus and Clostridium light path through the scatterer, and o- is given by
can differentiate to form an ES, a dormant cell type, 02 = (12)_ (1)2. The first term on the right-hand side of
in response to hostile environments and can revert to Eq. (1) is the scattering cross section in the interme-
vegetative cells by germination when conditions be- diate case limit.11' 12 The second term is a correction
come more receptive. The structural changes occur- introduced by the GRA when the condition
ring during germination are important to biologists (2 rr/x))m - 11 < < 1 is not met. In the absence of ab-
and in bioagent detection. In the past, fluorescence
was shown to be an effective technique to detect ESs sorption, optical extinction K is given by
in situ. Combining light scattering, extinction, and W422 16n4 8r4 NLr
fluorescence might offer an ideal tool to determine K=C 5NL='rr2 -- ar2 _-- N (2)
the type of agent present. x2 X4 12

In this Letter light extinction is used in situ to
monitor Bacillus subtilis ES activation and to simul- where N is the concentration and L is the path
taneously retrieve the refractive index and size of the length. For uniform spheres, a and f8 are given by

ES during this process. The optical techniques and 460
methods described allow for the real-time visualiza- a - 2(m - 1)2, 8 ý _-(M - 1)4. (3)
tion of the ES activation process and the initial stage 81
of bacterial differentiation. The results may have im-
portant significance in bioagent identification sys- For soft particles with a size smaller than or compa-
tems and modeling applications. rable with X the first term in Eq. (2) is sufficient to

ESs are significantly denser than and their refrac- describe K, which is linear in X-2. For particles with a
tion index is greater than that of vegetative cells. ESs larger size or refractive index the second term in Eq.
consist of a high-density, dehydrated core surrounded (2) must be included to accurately describe K.
by a lower-density spore coat composed of cross- In the experiment B. subtilis ESs (strain NCTC
linked polypeptides. Germination begins with activa- 3610) were isolated from their cellular debris,13 heat
tion, during which the coat is shed and the core hy- activated,14 and placed in a germination medium. 15

drates with a subsequent decrease in density and The germination medium had a minimal carbon
refractive index and an increase in size. source and limited amino acid content to restrict cell

From the recent statistical interpretation of growth and prevent reversal of activation.
anomalous diffraction theory9 '10 light extinction by Transmission was measured from 400 to 1000 nm,
soft particles is mainly determined by the mean and a region in which the bacteria have little absorption,
mean-squared size of the particles in the GRA. The and losses are due to scattering. The concentration
scattering cross section can be approximated by was 1.03 X 10 ESs/ml in a 1-cm quartz cuvette. The

0146-9592/05/060589-3/$15.00 © 2005 Optical Society of America
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transmission spectra were measured with a halogen 0.12 , "

light source (HL2000, Ocean Optics, Dunedin,
Florida) and compact spectrometer (HR2000, Ocean 0.08 G

Optics), both coupled to optical fibers. The spectra o ..... ....
were acquired at 1-min intervals for the first 3.5 h af- 0.04 Unshocked spores

ter heat shock and at 30-min intervals between 3.5 o.oo . ................................
and 20 h. Each spectra was integrated for 5 s. -0,002

A least-squares fit to a function of the form c
., -0.004r 4

K = C 2X\- 2 + C 4 X- 4  (4) -0.006

was applied to each transmission spectrum. Figure 1 -0.008 .0,...0:5 -.1.0152.5.0.2.5 , V ... 1..2 1 ..
shows K plotted as a function of X- 2 before heat shock Time (hours)

and at representative times after heat shock: t= 1,
30, 60, 120, and 360 min. The respective least- Fig. 2. Least-squares fit coefficients C2 and C4 plotted as a
squares fits are also plotted in Fig. 1. Coefficients C 2  function of time.

and C 4 are plotted at all time intervals in Fig. 2. A use of a fixed index of 1.39 is substantially larger
seen in Fig. 1, the spectrum from the spores immedi- than the radius calculated from C 2 and C 4 and incor-
ately after heat shock is nearly identical to that of rectly predicts that the radius is decreasing over
the spores before heat shock, indicating that the re- time. This lack of agreement demonstrates that the
sponse of the spores to heating is not instantaneous. ES refractive index during the early time period is
It can also be observed in Figs. 1 and 2 that the larg- greater than 1.39. The ES radius, calculated from C 2
est reduction in scattering occurs in the first 2 h, pri- and C4 , is 0.35 jm for the unshocked spores and
marily caused by a dramatic decrease in the refrac- 0.34/bm at 1 min after heat shock. The radius gradu-
tive index as the ESs shed their coat and hydrate the ally increases to a maximum of -0.6 /Tm after 6 h. In
core. From 2 to 3 h the rate of reduction in refractive a nutrient-rich medium the ESs would continue to
index slowed while the radius continued to increase, germinate and grow, eventually reaching the size of
The scattering cross section remained relatively con- vegetative cells. The refraction index, calculated from
stant from 3 to 8 h, indicating that the refractive in- Eq. (2) and expressions (3) and plotted in Fig. 4, is
dex and spore size were not changing significantly. 1.55 for both the unshocked spores and at 1 min after
After 8 h, K decreased slowly as the ESs decayed, re- heat shock. The index decreases steadily in the first
leasing their contents into solution. 3 h, after which it remains constant at 1.39, showing

With a uniform spherical model for the ESs, which that by this time the core has hydrated and become
neglected the contribution of the coat, the radius and closer to vegetative cells in density and composition.
index were calculated from C 2 and C4 with Eq. (2) A better model for the spore structure that takes
and expressions (3). It was observed that the radius into account the spore coat is two concentric nonab-
(plotted in Fig. 3) remained relatively constant in the sorbing spheres consisting of a thin outer shell-the
first 30 min after heat shock. The ES radius was also spore coat-that slowly dissolves and an inner
calculated with only C 2 and making the assumption sphere-the spore core-that changes in index and
that the refractive index was equal to that of vegeta- size. The ratio of spore coat thickness to cell radius is
tive cells, 1.39 (Refs. 3 and 16; also plotted in Fig. 3). designated s. The initial spore coat thickness is taken
The radius, calculated by both methods is in agree- to be 70 nm,17 and, for an approximate initial radius
ment with t>3 h, confirming that by 3 h the ESs of 400 nm, s is initially set to 0.175. Since the calcu-
have lost their coat and the index is close to that of lated spore radius (see Fig. 3) was unchanged during
vegetative cells. For t < 3 h the radius calculated by the first 30 min, our model assumes that the spore

0.6 -_ coat also remains unchanged during this time. This
.Spore•-- • model assumes that from t=0.5 to t=3 h the coat

0.5 1 min- - thickness uniformly decreases from its initial value
S30 min to zero. Microscopy confirmed that the spore coat

S0 2 ,hrs completely dissolved within 3 h of heat shock.
C 0.3: 6 ,hrsIn the GRA for concentric spheres the geometric

ray inside the particle may bisect both the core and
.2 the coat, with relative refractive indices mi and mi,

0 0.1 respectively. The modified geometric path, 1'=li(mi
-1) + 1l(mo -1), is given by

0. . l' = 2(me- 1)(r- h2 ) 1 2 + 2(mi- mo)(r, h 2 2 , h

1. (•'2) < ri

Fig. 1. Light extinction as a function of wavelength plot-
ted for spores before heat shock and at t=1 mrin, 30 min, =2(mo - 1)(r2 - h2) 1 2, h > ri, (5)
1 h, 2 h, and 6 h after heat shock (dashed curves). The
least-squares fit to K=C 2X-2+ C 4 X - 4 is shown for each spec- with the distribution function for h given by p(h)
trum (solid curves). =(2h/r2) and normalized to unity. Evaluating (V') and
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(12) with Eq. (5) and keeping only the first-order 1.60. //1

terms in s allows a and 83 to be approximated by Refractive index from Ref 4.
t1 .- . Calculated with spore coat

Calculated without spore coat
o" 2(mi - 1)2 - 8(mi - 1)(mi - mo)s + ... , 1.50 _

460 544
16- (m -i1)4 - - (mi - mo)[(mi - 1)3 • 1.40

81 271.5 1.35i

- 2(mi - mo)3]s + .. ,(6)
1.30 .......

0.0 0.5 1.0 1.5 2.0 2.5 6 12 18

where m, is taken to be 1.39. The radii and refractive Time (hours)

indices were recalculated with this model and are Fig. 4. ES refractive index calculated for uniform spheres
also plotted in Figs. 3 and 4, respectively. The recal- (no coat) and two concentric spheres with the outer sphere
culated spore radius is 0.37 Am before heat shock. (spore coat) dissolving as described in the text.
For the first 30 min after heat shock the radius re-
mains essentially unchanged at 0.38 /m and then This work was supported in part by a NASA Uni-
slowly increases. The refractive index is 1.515 for the versity Research Center; the New York State Office
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The interaction of light with tissue and cells is the underlying mechanism for optical biomedical

technology used in optical imaging and spectroscopy for detection of pathology changes. The

optical properties of tissue are determined by chromophores, microstructures and local refractive

index variations. Microstructures in biological tissue range from organelles 0.2-0.5/[m or smaller,

mitochondria 1 - 4jim in length and 0.3 - 0.7ttm in diameter, nuclei 3 - 10[tm in diameter, to

mammalian cells 10 - 30Wpm in diameter. The refractive index variation is about 0.04 - 0.10

for biological tissue with a background refractive index no = 1.35.1 Recently, the nature of light

scattering in biological tissue has been actively studied.'- 6 As many biological tissues have fractal-

like organization and are statistically self-similar, 2'7-9 a discrete particle model of scattering centers

in tissue1'4 was proposed to model light scattering by tissue. The discrete particle model assumes

that the refractive-index variations caused by underlying microscopic structures can be treated as

spherical particles with sizes distributed according to a powerlaw:

q(a) = 7oa 3-Df (1)

where 77(a) is the volume fraction of spherical particles of radius 0 < a < am,, with a maximum

radius amex, rqo is a constant, and Df is the fractal dimension. On a microscopic scale the con-

stituents of tissue have no clear boundaries and merge into a quasi-continuum structure. Discrete

particles may not be appropriate to describe tissue inhomogeneities. As the refractive index varia-

tion in biological tissue is weak, tissue is better modeled as continuous random media where light

scattering is not due to the discontinuities in refractive index but rather weak random fluctuations

of the dielectric permittivity.5

In this Letter, we propose to use fractal continuous random media to model light scattering

by biological tissue and cells. The correlation function R(r) of the random fluctuations of the

dielectric permittivity depends on the fractal dimension Df and the cutoff correlation length lmax.

Analytical expressions are derived for the power law of the reduced scattering coefficient, the



anisotropy factor of scattering, and the phase function. By examining the existing experimental

results, the fractal fluctuation of the dielectric permittivity is shown to determine visible and near

infrared light scattering by biological tissue and cell suspensions. The connection of the proposed

model to the discrete particle model and implications on spectroscopic tissue diagnosis will also

be discussed.

Assuming tissue is statistically space homogeneous and isotropic, the correlation function of

the dielectric permittivity can be written as R(r) = (&(r')&(r' + r)) where & is the fluctuation

of the dielectric permittivity from the background value. R(r) is proportional to the correlation

function of the fluctuation of the refractive index P&(r) and S(r) = 2n2(m - 1) where m is

the relative refractive index at position r when the fluctuation of the refractive index is weak.

Light scattering by the continuous random medium is determined by the power spectrum /t of the

random fluctuations of the dielectric permittivity. The amplitude scattering matrix1° of the weakly

fluctuating continuous random medium at the scattering angle 0 is given by

S(O) o 0 = k ZR(2k sin 2) (2)

where k =- 2wrno/A is the wave number and A is the wavelength of light in vacuum. A simple

exponential correlation function was considered by Moscoso et. al.5 for modeling tissue light

scattering. It, however, did not describe essential features of light scattering by tissue such as the

power law of the reduced scattering coefficient.

The correlation function of the random fluctuations of the dielectric permittivity, in the fractal

continuous medium model, is assumed to be an average of exponential functions weighted by a

power law distribution Eq. (1) for the correlation length 1:

= 2 ima.. e r(dl 2q14-D

R(r)= =x( )nId ma'0 E -D (---) (3)
10 1 - max



where 62 = 4nri(m - 1)2,/max is the cutoff correlation length, and En(z) = fl exp(-z/t)t- 2 dt.

The correlation function at the origin is R(0) = O2T where T, is the total volume fraction of

scattering centers (T, c- 0.3 in soft tissue). The correlation function decays exponentially as

= E714-Df ( r -)1 ( large
R(r) 601max exp -1-a/ at a large separation r > 1max. The power spectrum is

given by

R (k) =[Iniax E 213 -q()d
Jo 7r2(1 + k212)2  dl

1 -2 2 17-Df 7-Df 9-Df 2  )(=-- 7 E ,7 ma 2/,2 kM.) (4)

7 - Df 2 2

where 2F1 is the Hypergeometric function.

The amplitude scattering function S(O) in Eq. (2) can now be written as

IS01 -0 f1mx c2 k613
= k6 R(2ksin 6) = jo 2-[1 + 2  k1 (1)dl (5)

2 2F~ +2(1 - p)k2 l2 ]277ld

where y - cos 0. From Eq. (5), the anisotropy factor (mean cosine of the scattering angle) can be

found:

S/ dQ (1 + p2)p IS(O)12/ dQ ( 1 + '42)IS (0) 12(6
2k2 2 k2  (6)

The unnormalized phase function is given by:

(O) - (1 + p2) IS(9)1 2

P() - 2k 2

5-D- 1r + [/21 2 7
-Df

sin T 2 [2(l p)]
sin (5-27T) 2

oC (1+/_2)(1 -i)-2. (7)

The reduced scattering coefficient, defined as [t,(1 - g), is given by

P ' = I d Q k( 1 + p 2 ) j ( 1 -_Im t ) S {( O) l +2

S 2k2

- 2 -• o k fo 3k• dx Ix 2-Df ln(4 X2 + 1)
2 J~,o 2



3+8 x2  -2-D [4x2(2X2 + 1)- (4X2 + 1) ln(4X2 + 1)1}-16 (1 + 4X2)x

- 2 70Oa/3- D (8)

where

=(2irno)D- 3  (11-4Df + D2) 5-DDfa = 27n D -3f- f 2 (9)
(Df + 1)(Df - 1)(Df - 3) 25-D sin (•-2- 7r)

is a constant dependent only on Df. We have assumed klm, >» 1 in our derivations of Eqs. (7)

and (8).

The values of g in the fractal continuous medium model versus the cutoff size parameter klmax

for various Df are displayed in Fig. l(a). g is larger with the increase of 1max and the decrease of

Df. Light scattering Eq. (5) can be regarded to be a weighted sum from components of different

correlation lengths where the peak contribution occurs at kl* = klma when Df < 4 and kl*

may be different from klmax when Df > 4. The value of kl* when Df > 4 is displayed in

Fig. 1 (b). The power law of /,.' Eq. (8) is obtained thanks to the cutoff at large correlation lengths

as g approaches unity for components of increasing correlation lengths. By fitting experimental

wavelength dependence of p' to Eq. (8), one can determine both the fractal dimension Df and the

parameter E2770.

Comparisons of the fractal continuous medium model for biological tissue and cells to experi-

mental results are in order. We first fit the theoretical power spectrum Eq. (4) to the power spectrum

of index variations in mouse liver tissue reported by Schmitt et. al.2 [see Fig. 2(a)]. The fitting

is excellent and yields /max = 2.3prm and Df = 4.0 for mouse liver tissue. A single exponential

correlation function5 will not fit. We do not know any results on the wavelength dependence of the

reduced scattering coefficient for mouse liver tissue. The wavelength dependence of the reduced

scattering coefficient of rat liver tissue was reported by Parsa et. al.' The reduced scattering co-

efficients within the range 600 to 1400nm are displayed in Fig. 2(b) and fitted well to a power



law A"-0 94 . The fractal dimension of rat liver tissue is hence Df = 3.94. The cutoff correlation

length is found to be /max = 1.5prm from g = 0.94 of the rat liver tissue at 800nm. Evidently, both

the fractal dimension and the cutoff correlation length extracted from the power spectrum of the

refractive index variations of mouse liver tissue agree reasonably well with those extracted from

the light scattering data for rat liver tissue. This gives a strong support to the fractal continuous

medium model for light scattering by tissue.

Fig. (3) displays the phase function for suspensions of rat embryo fibroblast cells (Ml) and

mitochondria, respectively, reported by Mourant et. al.3 and the fitting to the theoretical phase

function (7). The fractal dimension is found to be Df = 3.86 and 4.58 for M1 cells and mito-

chondria, respectively. The value of the fractal dimension for Ml cells was 4 ± 0.07 using the

reported wavelength dependence y' ox A-1.0:0. 07 over the wavelength range 500 - 800nm. The

agreement between the two values of Df for Ml cells from fitting either the phase function or

the powerlaw of /2 is good. The g-factor for M1 cells was reported to be 0.98 and the maxi-

mum correlation length can be estimated to be lr, ", 3.2- m. The g-factor for mitochondria

can be computed from the phase function to be 0.81 and the maximum correlation length is then

estimated to be lm,, - 0.6/,m. The component contributing most to light scattering has size pa-

rameter kl* = klmax • 40 and kl* _- 1 in Ml cells and mitochondria, respectively. Ml cells have

much larger scattering centers and much smaller fractal dimension than mitochondria. The larger

scattering centers in Ml cells are due to the nucleus.

These comparisons show that the fractal continuous medium model describes well light scatter-

ing from both biological tissue and cell suspensions. Cell suspension can be regarded as composi-

tion of many mini-continuous media of random fluctuating dielectric permittivity due to individual

cells. The powerlaw of the reduced scattering coefficient originates from the underlying fractal

fluctuation of the refractive index of the medium.



Light scattering in the fractal continuous medium model is caused by weak random fluctuations

of the dielectric permittivity. This model, however, bears a close connection with the discrete

particle model. We can approximate the amplitude scattering matrix of the spherical particles in

the discrete particle model by12

IS(O)! 2  2Irm- 112X6 (10)

[1 + 2(1 - cos O)x2] 2

where x =- ka is the size parameter of the particle as the particles are soft (Irm - 11 < 1). Ignoring

the effect due to correlated scattering based on the fact that correlated scattering among particles

of size much less than a wavelength is most significant while their contribution to scattering is

minimal' 3 , the discrete particle model assuming a particle size distribution of the powerlaw (1)

reaches the same amplitude scattering function (5) as in the fractal continuous medium model.

This illustrates the correlation length 1 in the fractal continuous medium model may be intuitively

linked to the radius of "fictional" scattering centers present within tissue.

The power in the powerlaw of /t oc A-` is usually called the scattering power. The scattering

power in the fractal continuous medium model relates to the fractal dimension of the underlying

fluctuation of the refractive index (b = Df - 3) and should be distinguished from that due to Mie

particles of narrow size distribution.3 The scattering power has been recognized to be an important

parameter in discriminating normal and cancerous tissue.""-6 Both the fractal dimension Df and

the parameter E2rqo can be estimated from fitting the wavelength dependence of[P' to Eq. (8) in the

fractal continuous medium model. The value of Df reveals the relative weight of small scattering

centers vs large scattering centers. The value of E2r70 represents the overall density of scattering

centers which is proportional to the radiographic density of tissue of predictive value for cancer

risk."7 The maximum correlation length lm•, can be estimated from the anisotropy factor. The

access to all these parameters will yield much more valuable information about the structure and

the physiological state of tissue than using the scattering power alone.



In conclusion, we have shown that light scattering properties of biological tissue and cell sus-

pensions can be well represented by a fractal continuous random medium model where light scat-

tering is due to weak random fluctuations of the dielectric permittivity. The fractal dimension

Df and the cutoff correlation length imax characterizes the essential features of light scattering by

biological tissue and cell suspensions, including the wavelength dependence of the reduced scat-

tering coefficient, the phase function, and the anisotropy factor. The fractal continuous random

medium model should facilitate the analysis of light scattering spectroscopy for tissue diagnosis

and provide valuable insight to light scattering mechanisms by tissue and cells.
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(Grant# DAMD 17-02-1-0516).

References

1. J. M. Schmitt and G. Kumar, Appl. Opt. 37, 2788 (May 1998).

2. J. M. Schmitt and G. Kumar, Opt. Lett. 21, 1310 (1996).

3. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen and T. M. Johnson, Appl.

Opt. 37, 3586 (Jun. 1998).

4. R. K. Wang, J. Mod. Opt. 47, 103 (2000).

5. M. Moscoso, J. B. Keller and G. Papanicolaou, J. Opt. Soc. Am. A 18, 948 (Apr. 2001).

6. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi,

M. Mueller, C. W. Boone, R. R. Dasari and M. S. Feld, IEEE J. Selected Topics in Quantum

Electron. 7, 887 (2001).

7. Y. Gazit, D. A. Berk, M. Leunig, L. T. Baxter and R. K. Jain, Phys. Rev. Lett. 75, 2428

(1995).

8. A. J. Einsteinl, H.-S. Wu and J. Gil, Phys. Rev. Lett. 80, 397 (1998).

9. T. Vicsek, Fluctuation and scaling in biology, (Oxford University Press, New York) (2001).



10. H. C. van de Hulst, Light scattering by smallparticles, (Dover, New York) (1981).

11. P. Parsa, S. L. Jacques and N. S. Nishioka, Appl. Opt. 28, 2325 (Jun. 1989).

12. V. S. Remizovich, Sov. Phys. JETP 60, 290 (1984).

13. V. Twersky, J. Opt. Soc. Am. 65, 524 (1975).

14. N. Ghosh, S. K. Mohanty, S. K. Majumder and P. K. Gupta, Appl. Opt. 40, 176 (Jan. 2001).

15. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butter, R. F. Holcombe

and B. J. Tromberg, Academic Radiology 8, 211 (2001).

16. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels

and R. Cubeddu, J. Biomed. Opt. 9, 1143 (2004).

17. K. Blyschak, M. Simick, R. Jong and L. Lilge, Med. Phys. 31, 1398 (2004).



List of Figures

Fig. 1 (a) The anisotropy factor of the fractal continuous random medium versus the cutoff size

parameter kimax. (b) Size parameter kl* of the component contributing most to light scattering

when Df > 4.

Fig. 2 (a) Power spectrum of refractive index variations in mouse liver tissue fitted to the

theoretical power spectrum Eq. (4). Symbols represent data reported by2 and the dash line is the

theoretical fit. Fitting yields Df = 4.0 and lma, = 2.3ptm. (b) The wavelength dependence of

the reduced scattering coefficient of rat liver tissue fitted to the powerlaw A3-Df. The symbols

represent data reported by]' and the solid line show the fitted curve. Fitting yields Df = 3.94 and

Imax = 1.5pm.

Fig. 3 Phase function of suspensions of rat embryo fibroblast cells (MI) and mitochondria fitted

to the theoretical phase function Eq. (7). Symbols are data reported by3 and the solid lines are

theoretical curves. Fitting yields Df = 3.86 and 4.58 for M1 cells and mitochondria respectively.
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